Radiomics-Informed Deep Learning for Classification of Atrial Fibrillation Sub-Types from Left-Atrium CT Volumes Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2308.06933
Atrial Fibrillation (AF) is characterized by rapid, irregular heartbeats, and can lead to fatal complications such as heart failure. The disease is divided into two sub-types based on severity, which can be automatically classified through CT volumes for disease screening of severe cases. However, existing classification approaches rely on generic radiomic features that may not be optimal for the task, whilst deep learning methods tend to over-fit to the high-dimensional volume inputs. In this work, we propose a novel radiomics-informed deep-learning method, RIDL, that combines the advantages of deep learning and radiomic approaches to improve AF sub-type classification. Unlike existing hybrid techniques that mostly rely on naïve feature concatenation, we observe that radiomic feature selection methods can serve as an information prior, and propose supplementing low-level deep neural network (DNN) features with locally computed radiomic features. This reduces DNN over-fitting and allows local variations between radiomic features to be better captured. Furthermore, we ensure complementary information is learned by deep and radiomic features by designing a novel feature de-correlation loss. Combined, our method addresses the limitations of deep learning and radiomic approaches and outperforms state-of-the-art radiomic, deep learning, and hybrid approaches, achieving 86.9% AUC for the AF sub-type classification task. Code is available at https://github.com/xmed-lab/RIDL.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2308.06933
- https://arxiv.org/pdf/2308.06933
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4385849026
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4385849026Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2308.06933Digital Object Identifier
- Title
-
Radiomics-Informed Deep Learning for Classification of Atrial Fibrillation Sub-Types from Left-Atrium CT VolumesWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-14Full publication date if available
- Authors
-
Weihang Dai, Xiaomeng Li, Taihui Yu, Di Zhao, Jun Shen, Kwang‐Ting ChengList of authors in order
- Landing page
-
https://arxiv.org/abs/2308.06933Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2308.06933Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2308.06933Direct OA link when available
- Concepts
-
Deep learning, Artificial intelligence, Computer science, Concatenation (mathematics), Radiomics, Feature (linguistics), Feature engineering, Machine learning, Feature selection, Task (project management), Atrial fibrillation, Multi-task learning, Pattern recognition (psychology), Convolutional neural network, Feature extraction, Artificial neural network, Feature learning, Medicine, Engineering, Mathematics, Philosophy, Cardiology, Systems engineering, Combinatorics, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4385849026 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2308.06933 |
| ids.doi | https://doi.org/10.48550/arxiv.2308.06933 |
| ids.openalex | https://openalex.org/W4385849026 |
| fwci | |
| type | preprint |
| title | Radiomics-Informed Deep Learning for Classification of Atrial Fibrillation Sub-Types from Left-Atrium CT Volumes |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12386 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9894000291824341 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2204 |
| topics[0].subfield.display_name | Biomedical Engineering |
| topics[0].display_name | Advanced X-ray and CT Imaging |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9886999726295471 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T10372 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9613999724388123 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Cardiac Imaging and Diagnostics |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108583219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8343236446380615 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[0].display_name | Deep learning |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7724323272705078 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6975209712982178 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C87619178 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6579954624176025 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q126002 |
| concepts[3].display_name | Concatenation (mathematics) |
| concepts[4].id | https://openalex.org/C2778559731 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5681200623512268 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q23808793 |
| concepts[4].display_name | Radiomics |
| concepts[5].id | https://openalex.org/C2776401178 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5650510191917419 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[5].display_name | Feature (linguistics) |
| concepts[6].id | https://openalex.org/C2778827112 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5588361024856567 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q22245680 |
| concepts[6].display_name | Feature engineering |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.5309714078903198 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C148483581 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5135667324066162 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[8].display_name | Feature selection |
| concepts[9].id | https://openalex.org/C2780451532 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5110272169113159 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[9].display_name | Task (project management) |
| concepts[10].id | https://openalex.org/C2779161974 |
| concepts[10].level | 2 |
| concepts[10].score | 0.49739769101142883 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q815819 |
| concepts[10].display_name | Atrial fibrillation |
| concepts[11].id | https://openalex.org/C28006648 |
| concepts[11].level | 3 |
| concepts[11].score | 0.472868412733078 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q6934509 |
| concepts[11].display_name | Multi-task learning |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4712429642677307 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C81363708 |
| concepts[13].level | 2 |
| concepts[13].score | 0.458438903093338 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[13].display_name | Convolutional neural network |
| concepts[14].id | https://openalex.org/C52622490 |
| concepts[14].level | 2 |
| concepts[14].score | 0.4577125906944275 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[14].display_name | Feature extraction |
| concepts[15].id | https://openalex.org/C50644808 |
| concepts[15].level | 2 |
| concepts[15].score | 0.4328210651874542 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[15].display_name | Artificial neural network |
| concepts[16].id | https://openalex.org/C59404180 |
| concepts[16].level | 2 |
| concepts[16].score | 0.42722588777542114 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[16].display_name | Feature learning |
| concepts[17].id | https://openalex.org/C71924100 |
| concepts[17].level | 0 |
| concepts[17].score | 0.16482055187225342 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[17].display_name | Medicine |
| concepts[18].id | https://openalex.org/C127413603 |
| concepts[18].level | 0 |
| concepts[18].score | 0.08097043633460999 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[18].display_name | Engineering |
| concepts[19].id | https://openalex.org/C33923547 |
| concepts[19].level | 0 |
| concepts[19].score | 0.07326754927635193 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[19].display_name | Mathematics |
| concepts[20].id | https://openalex.org/C138885662 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[20].display_name | Philosophy |
| concepts[21].id | https://openalex.org/C164705383 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q10379 |
| concepts[21].display_name | Cardiology |
| concepts[22].id | https://openalex.org/C201995342 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[22].display_name | Systems engineering |
| concepts[23].id | https://openalex.org/C114614502 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[23].display_name | Combinatorics |
| concepts[24].id | https://openalex.org/C41895202 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[24].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/deep-learning |
| keywords[0].score | 0.8343236446380615 |
| keywords[0].display_name | Deep learning |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7724323272705078 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6975209712982178 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/concatenation |
| keywords[3].score | 0.6579954624176025 |
| keywords[3].display_name | Concatenation (mathematics) |
| keywords[4].id | https://openalex.org/keywords/radiomics |
| keywords[4].score | 0.5681200623512268 |
| keywords[4].display_name | Radiomics |
| keywords[5].id | https://openalex.org/keywords/feature |
| keywords[5].score | 0.5650510191917419 |
| keywords[5].display_name | Feature (linguistics) |
| keywords[6].id | https://openalex.org/keywords/feature-engineering |
| keywords[6].score | 0.5588361024856567 |
| keywords[6].display_name | Feature engineering |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.5309714078903198 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/feature-selection |
| keywords[8].score | 0.5135667324066162 |
| keywords[8].display_name | Feature selection |
| keywords[9].id | https://openalex.org/keywords/task |
| keywords[9].score | 0.5110272169113159 |
| keywords[9].display_name | Task (project management) |
| keywords[10].id | https://openalex.org/keywords/atrial-fibrillation |
| keywords[10].score | 0.49739769101142883 |
| keywords[10].display_name | Atrial fibrillation |
| keywords[11].id | https://openalex.org/keywords/multi-task-learning |
| keywords[11].score | 0.472868412733078 |
| keywords[11].display_name | Multi-task learning |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.4712429642677307 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[13].score | 0.458438903093338 |
| keywords[13].display_name | Convolutional neural network |
| keywords[14].id | https://openalex.org/keywords/feature-extraction |
| keywords[14].score | 0.4577125906944275 |
| keywords[14].display_name | Feature extraction |
| keywords[15].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[15].score | 0.4328210651874542 |
| keywords[15].display_name | Artificial neural network |
| keywords[16].id | https://openalex.org/keywords/feature-learning |
| keywords[16].score | 0.42722588777542114 |
| keywords[16].display_name | Feature learning |
| keywords[17].id | https://openalex.org/keywords/medicine |
| keywords[17].score | 0.16482055187225342 |
| keywords[17].display_name | Medicine |
| keywords[18].id | https://openalex.org/keywords/engineering |
| keywords[18].score | 0.08097043633460999 |
| keywords[18].display_name | Engineering |
| keywords[19].id | https://openalex.org/keywords/mathematics |
| keywords[19].score | 0.07326754927635193 |
| keywords[19].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2308.06933 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2308.06933 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2308.06933 |
| locations[1].id | doi:10.48550/arxiv.2308.06933 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2308.06933 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5072351784 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8619-236X |
| authorships[0].author.display_name | Weihang Dai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dai, Weihang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100427643 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1105-8083 |
| authorships[1].author.display_name | Xiaomeng Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Xiaomeng |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5030974005 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Taihui Yu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yu, Taihui |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101234309 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Di Zhao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhao, Di |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5068484719 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7206-1847 |
| authorships[4].author.display_name | Jun Shen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shen, Jun |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5077687075 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3885-4912 |
| authorships[5].author.display_name | Kwang‐Ting Cheng |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Cheng, Kwang-Ting |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2308.06933 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Radiomics-Informed Deep Learning for Classification of Atrial Fibrillation Sub-Types from Left-Atrium CT Volumes |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12386 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9894000291824341 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2204 |
| primary_topic.subfield.display_name | Biomedical Engineering |
| primary_topic.display_name | Advanced X-ray and CT Imaging |
| related_works | https://openalex.org/W2237537322, https://openalex.org/W2950678851, https://openalex.org/W4301248618, https://openalex.org/W3199964822, https://openalex.org/W4232132981, https://openalex.org/W4238046985, https://openalex.org/W2165343651, https://openalex.org/W2242427765, https://openalex.org/W2075830955, https://openalex.org/W2343790552 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2308.06933 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2308.06933 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2308.06933 |
| primary_location.id | pmh:oai:arXiv.org:2308.06933 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2308.06933 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2308.06933 |
| publication_date | 2023-08-14 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 77, 165 |
| abstract_inverted_index.AF | 95, 196 |
| abstract_inverted_index.CT | 35 |
| abstract_inverted_index.In | 72 |
| abstract_inverted_index.an | 119 |
| abstract_inverted_index.as | 16, 118 |
| abstract_inverted_index.at | 203 |
| abstract_inverted_index.be | 31, 55, 148 |
| abstract_inverted_index.by | 5, 158, 163 |
| abstract_inverted_index.is | 3, 21, 156, 201 |
| abstract_inverted_index.of | 40, 87, 176 |
| abstract_inverted_index.on | 27, 48, 105 |
| abstract_inverted_index.to | 12, 65, 67, 93, 147 |
| abstract_inverted_index.we | 75, 109, 152 |
| abstract_inverted_index.AUC | 193 |
| abstract_inverted_index.DNN | 138 |
| abstract_inverted_index.The | 19 |
| abstract_inverted_index.and | 9, 90, 122, 140, 160, 179, 182, 188 |
| abstract_inverted_index.can | 10, 30, 116 |
| abstract_inverted_index.for | 37, 57, 194 |
| abstract_inverted_index.may | 53 |
| abstract_inverted_index.not | 54 |
| abstract_inverted_index.our | 171 |
| abstract_inverted_index.the | 58, 68, 85, 174, 195 |
| abstract_inverted_index.two | 24 |
| abstract_inverted_index.(AF) | 2 |
| abstract_inverted_index.Code | 200 |
| abstract_inverted_index.This | 136 |
| abstract_inverted_index.deep | 61, 88, 126, 159, 177, 186 |
| abstract_inverted_index.into | 23 |
| abstract_inverted_index.lead | 11 |
| abstract_inverted_index.rely | 47, 104 |
| abstract_inverted_index.such | 15 |
| abstract_inverted_index.tend | 64 |
| abstract_inverted_index.that | 52, 83, 102, 111 |
| abstract_inverted_index.this | 73 |
| abstract_inverted_index.with | 131 |
| abstract_inverted_index.(DNN) | 129 |
| abstract_inverted_index.86.9% | 192 |
| abstract_inverted_index.RIDL, | 82 |
| abstract_inverted_index.based | 26 |
| abstract_inverted_index.fatal | 13 |
| abstract_inverted_index.heart | 17 |
| abstract_inverted_index.local | 142 |
| abstract_inverted_index.loss. | 169 |
| abstract_inverted_index.novel | 78, 166 |
| abstract_inverted_index.serve | 117 |
| abstract_inverted_index.task, | 59 |
| abstract_inverted_index.task. | 199 |
| abstract_inverted_index.which | 29 |
| abstract_inverted_index.work, | 74 |
| abstract_inverted_index.Atrial | 0 |
| abstract_inverted_index.Unlike | 98 |
| abstract_inverted_index.allows | 141 |
| abstract_inverted_index.better | 149 |
| abstract_inverted_index.cases. | 42 |
| abstract_inverted_index.ensure | 153 |
| abstract_inverted_index.hybrid | 100, 189 |
| abstract_inverted_index.method | 172 |
| abstract_inverted_index.mostly | 103 |
| abstract_inverted_index.naïve | 106 |
| abstract_inverted_index.neural | 127 |
| abstract_inverted_index.prior, | 121 |
| abstract_inverted_index.rapid, | 6 |
| abstract_inverted_index.severe | 41 |
| abstract_inverted_index.volume | 70 |
| abstract_inverted_index.whilst | 60 |
| abstract_inverted_index.between | 144 |
| abstract_inverted_index.disease | 20, 38 |
| abstract_inverted_index.divided | 22 |
| abstract_inverted_index.feature | 107, 113, 167 |
| abstract_inverted_index.generic | 49 |
| abstract_inverted_index.improve | 94 |
| abstract_inverted_index.inputs. | 71 |
| abstract_inverted_index.learned | 157 |
| abstract_inverted_index.locally | 132 |
| abstract_inverted_index.method, | 81 |
| abstract_inverted_index.methods | 63, 115 |
| abstract_inverted_index.network | 128 |
| abstract_inverted_index.observe | 110 |
| abstract_inverted_index.optimal | 56 |
| abstract_inverted_index.propose | 76, 123 |
| abstract_inverted_index.reduces | 137 |
| abstract_inverted_index.through | 34 |
| abstract_inverted_index.volumes | 36 |
| abstract_inverted_index.However, | 43 |
| abstract_inverted_index.combines | 84 |
| abstract_inverted_index.computed | 133 |
| abstract_inverted_index.existing | 44, 99 |
| abstract_inverted_index.failure. | 18 |
| abstract_inverted_index.features | 51, 130, 146, 162 |
| abstract_inverted_index.learning | 62, 89, 178 |
| abstract_inverted_index.over-fit | 66 |
| abstract_inverted_index.radiomic | 50, 91, 112, 134, 145, 161, 180 |
| abstract_inverted_index.sub-type | 96, 197 |
| abstract_inverted_index.Combined, | 170 |
| abstract_inverted_index.achieving | 191 |
| abstract_inverted_index.addresses | 173 |
| abstract_inverted_index.available | 202 |
| abstract_inverted_index.captured. | 150 |
| abstract_inverted_index.designing | 164 |
| abstract_inverted_index.features. | 135 |
| abstract_inverted_index.irregular | 7 |
| abstract_inverted_index.learning, | 187 |
| abstract_inverted_index.low-level | 125 |
| abstract_inverted_index.radiomic, | 185 |
| abstract_inverted_index.screening | 39 |
| abstract_inverted_index.selection | 114 |
| abstract_inverted_index.severity, | 28 |
| abstract_inverted_index.sub-types | 25 |
| abstract_inverted_index.advantages | 86 |
| abstract_inverted_index.approaches | 46, 92, 181 |
| abstract_inverted_index.classified | 33 |
| abstract_inverted_index.techniques | 101 |
| abstract_inverted_index.variations | 143 |
| abstract_inverted_index.approaches, | 190 |
| abstract_inverted_index.heartbeats, | 8 |
| abstract_inverted_index.information | 120, 155 |
| abstract_inverted_index.limitations | 175 |
| abstract_inverted_index.outperforms | 183 |
| abstract_inverted_index.Fibrillation | 1 |
| abstract_inverted_index.Furthermore, | 151 |
| abstract_inverted_index.over-fitting | 139 |
| abstract_inverted_index.automatically | 32 |
| abstract_inverted_index.characterized | 4 |
| abstract_inverted_index.complementary | 154 |
| abstract_inverted_index.complications | 14 |
| abstract_inverted_index.deep-learning | 80 |
| abstract_inverted_index.supplementing | 124 |
| abstract_inverted_index.classification | 45, 198 |
| abstract_inverted_index.concatenation, | 108 |
| abstract_inverted_index.de-correlation | 168 |
| abstract_inverted_index.classification. | 97 |
| abstract_inverted_index.high-dimensional | 69 |
| abstract_inverted_index.state-of-the-art | 184 |
| abstract_inverted_index.radiomics-informed | 79 |
| abstract_inverted_index.https://github.com/xmed-lab/RIDL. | 204 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.4699999988079071 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |