RadOnc-GPT: A Large Language Model for Radiation Oncology Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2309.10160
This paper presents RadOnc-GPT, a large language model specialized for radiation oncology through advanced tuning methods. RadOnc-GPT was finetuned on a large dataset of radiation oncology patient records from the Mayo Clinic in Arizona. The model employs instruction tuning on three key tasks - generating radiotherapy treatment regimens, determining optimal radiation modalities, and providing diagnostic descriptions/ICD codes based on patient diagnostic details. Evaluations conducted by comparing RadOnc-GPT outputs to general large language model outputs showed higher ROUGE scores in these three tasks. The study demonstrated the potential of using large language models fine-tuned using domain-specific knowledge like RadOnc-GPT to achieve transformational capabilities in highly specialized healthcare fields such as radiation oncology. However, our model's clinical relevance requires confirmation, and it specializes in only the aforementioned three specific tasks and lacks broader applicability. Furthermore, its evaluation through ROUGE scores might not reflect the true semantic and clinical accuracy - challenges we intend to address in future research.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2309.10160
- https://arxiv.org/pdf/2309.10160
- OA Status
- green
- Cited By
- 11
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4386907175
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4386907175Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2309.10160Digital Object Identifier
- Title
-
RadOnc-GPT: A Large Language Model for Radiation OncologyWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-18Full publication date if available
- Authors
-
Zhengliang Liu, P. Wang, Yiwei Li, Jason Holmes, Peng Shu, Lian Zhang, Chenbin Liu, Ninghao Liu, Dajiang Zhu, Xiang Li, Quanzheng Li, Samir H. Patel, Terence T. Sio, Tianming Liu, Wei LiuList of authors in order
- Landing page
-
https://arxiv.org/abs/2309.10160Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2309.10160Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2309.10160Direct OA link when available
- Concepts
-
Computer science, Modalities, Radiation oncology, Medical physics, Key (lock), Language model, Domain (mathematical analysis), Transformational leadership, Relevance (law), Radiation therapy, Medicine, Artificial intelligence, Psychology, Radiology, Computer security, Sociology, Law, Social science, Social psychology, Political science, Mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6, 2024: 4, 2023: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4386907175 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2309.10160 |
| ids.doi | https://doi.org/10.48550/arxiv.2309.10160 |
| ids.openalex | https://openalex.org/W4386907175 |
| fwci | |
| type | preprint |
| title | RadOnc-GPT: A Large Language Model for Radiation Oncology |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9940999746322632 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T12422 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9821000099182129 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Radiomics and Machine Learning in Medical Imaging |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9693999886512756 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6674275994300842 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2779903281 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5916858911514282 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6888026 |
| concepts[1].display_name | Modalities |
| concepts[2].id | https://openalex.org/C2992520072 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5607203841209412 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q180507 |
| concepts[2].display_name | Radiation oncology |
| concepts[3].id | https://openalex.org/C19527891 |
| concepts[3].level | 1 |
| concepts[3].score | 0.465107262134552 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1120908 |
| concepts[3].display_name | Medical physics |
| concepts[4].id | https://openalex.org/C26517878 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4627499580383301 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[4].display_name | Key (lock) |
| concepts[5].id | https://openalex.org/C137293760 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4571729302406311 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3621696 |
| concepts[5].display_name | Language model |
| concepts[6].id | https://openalex.org/C36503486 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4371487498283386 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[6].display_name | Domain (mathematical analysis) |
| concepts[7].id | https://openalex.org/C38775462 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41966724395751953 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1569376 |
| concepts[7].display_name | Transformational leadership |
| concepts[8].id | https://openalex.org/C158154518 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4176395535469055 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7310970 |
| concepts[8].display_name | Relevance (law) |
| concepts[9].id | https://openalex.org/C509974204 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3813156485557556 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q180507 |
| concepts[9].display_name | Radiation therapy |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.35317370295524597 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.2999049425125122 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C15744967 |
| concepts[12].level | 0 |
| concepts[12].score | 0.22350633144378662 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[12].display_name | Psychology |
| concepts[13].id | https://openalex.org/C126838900 |
| concepts[13].level | 1 |
| concepts[13].score | 0.21085071563720703 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[13].display_name | Radiology |
| concepts[14].id | https://openalex.org/C38652104 |
| concepts[14].level | 1 |
| concepts[14].score | 0.08255639672279358 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[14].display_name | Computer security |
| concepts[15].id | https://openalex.org/C144024400 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[15].display_name | Sociology |
| concepts[16].id | https://openalex.org/C199539241 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[16].display_name | Law |
| concepts[17].id | https://openalex.org/C36289849 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[17].display_name | Social science |
| concepts[18].id | https://openalex.org/C77805123 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q161272 |
| concepts[18].display_name | Social psychology |
| concepts[19].id | https://openalex.org/C17744445 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[19].display_name | Political science |
| concepts[20].id | https://openalex.org/C33923547 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[20].display_name | Mathematics |
| concepts[21].id | https://openalex.org/C134306372 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[21].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6674275994300842 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/modalities |
| keywords[1].score | 0.5916858911514282 |
| keywords[1].display_name | Modalities |
| keywords[2].id | https://openalex.org/keywords/radiation-oncology |
| keywords[2].score | 0.5607203841209412 |
| keywords[2].display_name | Radiation oncology |
| keywords[3].id | https://openalex.org/keywords/medical-physics |
| keywords[3].score | 0.465107262134552 |
| keywords[3].display_name | Medical physics |
| keywords[4].id | https://openalex.org/keywords/key |
| keywords[4].score | 0.4627499580383301 |
| keywords[4].display_name | Key (lock) |
| keywords[5].id | https://openalex.org/keywords/language-model |
| keywords[5].score | 0.4571729302406311 |
| keywords[5].display_name | Language model |
| keywords[6].id | https://openalex.org/keywords/domain |
| keywords[6].score | 0.4371487498283386 |
| keywords[6].display_name | Domain (mathematical analysis) |
| keywords[7].id | https://openalex.org/keywords/transformational-leadership |
| keywords[7].score | 0.41966724395751953 |
| keywords[7].display_name | Transformational leadership |
| keywords[8].id | https://openalex.org/keywords/relevance |
| keywords[8].score | 0.4176395535469055 |
| keywords[8].display_name | Relevance (law) |
| keywords[9].id | https://openalex.org/keywords/radiation-therapy |
| keywords[9].score | 0.3813156485557556 |
| keywords[9].display_name | Radiation therapy |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.35317370295524597 |
| keywords[10].display_name | Medicine |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.2999049425125122 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/psychology |
| keywords[12].score | 0.22350633144378662 |
| keywords[12].display_name | Psychology |
| keywords[13].id | https://openalex.org/keywords/radiology |
| keywords[13].score | 0.21085071563720703 |
| keywords[13].display_name | Radiology |
| keywords[14].id | https://openalex.org/keywords/computer-security |
| keywords[14].score | 0.08255639672279358 |
| keywords[14].display_name | Computer security |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2309.10160 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2309.10160 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2309.10160 |
| locations[1].id | doi:10.48550/arxiv.2309.10160 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2309.10160 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101505879 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7061-6714 |
| authorships[0].author.display_name | Zhengliang Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Zhengliang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5108064164 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6730-1524 |
| authorships[1].author.display_name | P. Wang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wang, Peilong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100633409 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8380-4164 |
| authorships[2].author.display_name | Yiwei Li |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Li, Yiwei |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5074702297 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-8943-9471 |
| authorships[3].author.display_name | Jason Holmes |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Holmes, Jason |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5101723672 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1580-8603 |
| authorships[4].author.display_name | Peng Shu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shu, Peng |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5103500594 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Lian Zhang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhang, Lian |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5025580085 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2037-5630 |
| authorships[6].author.display_name | Chenbin Liu |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Liu, Chenbin |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5007489034 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9170-2424 |
| authorships[7].author.display_name | Ninghao Liu |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Liu, Ninghao |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5038582366 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-6940-3911 |
| authorships[8].author.display_name | Dajiang Zhu |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Zhu, Dajiang |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5100331094 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-9851-6376 |
| authorships[9].author.display_name | Xiang Li |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Li, Xiang |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5058429770 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-9651-5820 |
| authorships[10].author.display_name | Quanzheng Li |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Li, Quanzheng |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5038981517 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-8251-574X |
| authorships[11].author.display_name | Samir H. Patel |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Patel, Samir H. |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5032470889 |
| authorships[12].author.orcid | https://orcid.org/0000-0003-4210-5479 |
| authorships[12].author.display_name | Terence T. Sio |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Sio, Terence T. |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5100647156 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-8132-9048 |
| authorships[13].author.display_name | Tianming Liu |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Liu, Tianming |
| authorships[13].is_corresponding | False |
| authorships[14].author.id | https://openalex.org/A5100431792 |
| authorships[14].author.orcid | https://orcid.org/0000-0002-3865-8145 |
| authorships[14].author.display_name | Wei Liu |
| authorships[14].author_position | last |
| authorships[14].raw_author_name | Liu, Wei |
| authorships[14].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2309.10160 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | RadOnc-GPT: A Large Language Model for Radiation Oncology |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9940999746322632 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W2164219312, https://openalex.org/W2981038504, https://openalex.org/W2952333978, https://openalex.org/W2201615437, https://openalex.org/W2955928055, https://openalex.org/W2390457653, https://openalex.org/W2954424392, https://openalex.org/W2994084512, https://openalex.org/W2132586523, https://openalex.org/W2137812172 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2309.10160 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2309.10160 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2309.10160 |
| primary_location.id | pmh:oai:arXiv.org:2309.10160 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2309.10160 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2309.10160 |
| publication_date | 2023-09-18 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 43, 147 |
| abstract_inverted_index.a | 4, 20 |
| abstract_inverted_index.as | 108 |
| abstract_inverted_index.by | 64 |
| abstract_inverted_index.in | 32, 78, 102, 121, 153 |
| abstract_inverted_index.it | 119 |
| abstract_inverted_index.of | 23, 87 |
| abstract_inverted_index.on | 19, 39, 58 |
| abstract_inverted_index.to | 68, 98, 151 |
| abstract_inverted_index.we | 149 |
| abstract_inverted_index.The | 34, 82 |
| abstract_inverted_index.and | 52, 118, 128, 144 |
| abstract_inverted_index.for | 9 |
| abstract_inverted_index.its | 133 |
| abstract_inverted_index.key | 41 |
| abstract_inverted_index.not | 139 |
| abstract_inverted_index.our | 112 |
| abstract_inverted_index.the | 29, 85, 123, 141 |
| abstract_inverted_index.was | 17 |
| abstract_inverted_index.Mayo | 30 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.from | 28 |
| abstract_inverted_index.like | 96 |
| abstract_inverted_index.only | 122 |
| abstract_inverted_index.such | 107 |
| abstract_inverted_index.true | 142 |
| abstract_inverted_index.ROUGE | 76, 136 |
| abstract_inverted_index.based | 57 |
| abstract_inverted_index.codes | 56 |
| abstract_inverted_index.lacks | 129 |
| abstract_inverted_index.large | 5, 21, 70, 89 |
| abstract_inverted_index.might | 138 |
| abstract_inverted_index.model | 7, 35, 72 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.study | 83 |
| abstract_inverted_index.tasks | 42, 127 |
| abstract_inverted_index.these | 79 |
| abstract_inverted_index.three | 40, 80, 125 |
| abstract_inverted_index.using | 88, 93 |
| abstract_inverted_index.Clinic | 31 |
| abstract_inverted_index.fields | 106 |
| abstract_inverted_index.future | 154 |
| abstract_inverted_index.higher | 75 |
| abstract_inverted_index.highly | 103 |
| abstract_inverted_index.intend | 150 |
| abstract_inverted_index.models | 91 |
| abstract_inverted_index.scores | 77, 137 |
| abstract_inverted_index.showed | 74 |
| abstract_inverted_index.tasks. | 81 |
| abstract_inverted_index.tuning | 14, 38 |
| abstract_inverted_index.achieve | 99 |
| abstract_inverted_index.address | 152 |
| abstract_inverted_index.broader | 130 |
| abstract_inverted_index.dataset | 22 |
| abstract_inverted_index.employs | 36 |
| abstract_inverted_index.general | 69 |
| abstract_inverted_index.model's | 113 |
| abstract_inverted_index.optimal | 49 |
| abstract_inverted_index.outputs | 67, 73 |
| abstract_inverted_index.patient | 26, 59 |
| abstract_inverted_index.records | 27 |
| abstract_inverted_index.reflect | 140 |
| abstract_inverted_index.through | 12, 135 |
| abstract_inverted_index.Arizona. | 33 |
| abstract_inverted_index.However, | 111 |
| abstract_inverted_index.accuracy | 146 |
| abstract_inverted_index.advanced | 13 |
| abstract_inverted_index.clinical | 114, 145 |
| abstract_inverted_index.details. | 61 |
| abstract_inverted_index.language | 6, 71, 90 |
| abstract_inverted_index.methods. | 15 |
| abstract_inverted_index.oncology | 11, 25 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.requires | 116 |
| abstract_inverted_index.semantic | 143 |
| abstract_inverted_index.specific | 126 |
| abstract_inverted_index.comparing | 65 |
| abstract_inverted_index.conducted | 63 |
| abstract_inverted_index.finetuned | 18 |
| abstract_inverted_index.knowledge | 95 |
| abstract_inverted_index.oncology. | 110 |
| abstract_inverted_index.potential | 86 |
| abstract_inverted_index.providing | 53 |
| abstract_inverted_index.radiation | 10, 24, 50, 109 |
| abstract_inverted_index.regimens, | 47 |
| abstract_inverted_index.relevance | 115 |
| abstract_inverted_index.research. | 155 |
| abstract_inverted_index.treatment | 46 |
| abstract_inverted_index.RadOnc-GPT | 16, 66, 97 |
| abstract_inverted_index.challenges | 148 |
| abstract_inverted_index.diagnostic | 54, 60 |
| abstract_inverted_index.evaluation | 134 |
| abstract_inverted_index.fine-tuned | 92 |
| abstract_inverted_index.generating | 44 |
| abstract_inverted_index.healthcare | 105 |
| abstract_inverted_index.Evaluations | 62 |
| abstract_inverted_index.RadOnc-GPT, | 3 |
| abstract_inverted_index.determining | 48 |
| abstract_inverted_index.instruction | 37 |
| abstract_inverted_index.modalities, | 51 |
| abstract_inverted_index.specialized | 8, 104 |
| abstract_inverted_index.specializes | 120 |
| abstract_inverted_index.Furthermore, | 132 |
| abstract_inverted_index.capabilities | 101 |
| abstract_inverted_index.demonstrated | 84 |
| abstract_inverted_index.radiotherapy | 45 |
| abstract_inverted_index.confirmation, | 117 |
| abstract_inverted_index.aforementioned | 124 |
| abstract_inverted_index.applicability. | 131 |
| abstract_inverted_index.domain-specific | 94 |
| abstract_inverted_index.descriptions/ICD | 55 |
| abstract_inverted_index.transformational | 100 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 15 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |