RAG-Instruct: Boosting LLMs with Diverse Retrieval-Augmented Instructions Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2501.00353
Retrieval-Augmented Generation (RAG) has emerged as a key paradigm for enhancing large language models (LLMs) by incorporating external knowledge. However, current RAG methods face two limitations: (1) they only cover limited RAG scenarios. (2) They suffer from limited task diversity due to the lack of a general RAG dataset. To address these limitations, we propose RAG-Instruct, a general method for synthesizing diverse and high-quality RAG instruction data based on any source corpus. Our approach leverages (1) five RAG paradigms, which encompass diverse query-document relationships, and (2) instruction simulation, which enhances instruction diversity and quality by utilizing the strengths of existing instruction datasets. Using this method, we construct a 40K instruction dataset from Wikipedia, comprehensively covering diverse RAG scenarios and tasks. Experiments demonstrate that RAG-Instruct effectively enhances LLMs' RAG capabilities, achieving strong zero-shot performance and significantly outperforming various RAG baselines across a diverse set of tasks. RAG-Instruct is publicly available at https://github.com/FreedomIntelligence/RAG-Instruct.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.00353
- https://arxiv.org/pdf/2501.00353
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406031136
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406031136Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.00353Digital Object Identifier
- Title
-
RAG-Instruct: Boosting LLMs with Diverse Retrieval-Augmented InstructionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-31Full publication date if available
- Authors
-
Wanlong Liu, J Chen, Ke Ji, Li Zhou, Wenyu Chen, Benyou WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.00353Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.00353Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.00353Direct OA link when available
- Concepts
-
Boosting (machine learning), Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406031136 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.00353 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.00353 |
| ids.openalex | https://openalex.org/W4406031136 |
| fwci | |
| type | preprint |
| title | RAG-Instruct: Boosting LLMs with Diverse Retrieval-Augmented Instructions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10181 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9947999715805054 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Natural Language Processing Techniques |
| topics[1].id | https://openalex.org/T13523 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9620000123977661 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1703 |
| topics[1].subfield.display_name | Computational Theory and Mathematics |
| topics[1].display_name | Mathematics, Computing, and Information Processing |
| topics[2].id | https://openalex.org/T10601 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9384999871253967 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Handwritten Text Recognition Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C46686674 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9327405691146851 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q466303 |
| concepts[0].display_name | Boosting (machine learning) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4249733090400696 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.23839828372001648 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/boosting |
| keywords[0].score | 0.9327405691146851 |
| keywords[0].display_name | Boosting (machine learning) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4249733090400696 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.23839828372001648 |
| keywords[2].display_name | Artificial intelligence |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.00353 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.00353 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.00353 |
| locations[1].id | doi:10.48550/arxiv.2501.00353 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.00353 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5115756468 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Wanlong Liu |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liu, Wanlong |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5062345029 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | J Chen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chen, Junying |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5102000879 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0761-6484 |
| authorships[2].author.display_name | Ke Ji |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ji, Ke |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101515468 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0300-0394 |
| authorships[3].author.display_name | Li Zhou |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhou, Li |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100687323 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9933-8014 |
| authorships[4].author.display_name | Wenyu Chen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chen, Wenyu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5057282504 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1501-9914 |
| authorships[5].author.display_name | Benyou Wang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Wang, Benyou |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.00353 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-01-04T00:00:00 |
| display_name | RAG-Instruct: Boosting LLMs with Diverse Retrieval-Augmented Instructions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10181 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9947999715805054 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Natural Language Processing Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2125652721, https://openalex.org/W1540371141, https://openalex.org/W1549363203, https://openalex.org/W2147697413, https://openalex.org/W2154063878, https://openalex.org/W4231274751, https://openalex.org/W2556012038 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.00353 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.00353 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.00353 |
| primary_location.id | pmh:oai:arXiv.org:2501.00353 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.00353 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.00353 |
| publication_date | 2024-12-31 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 6, 45, 56, 107, 140 |
| abstract_inverted_index.To | 49 |
| abstract_inverted_index.as | 5 |
| abstract_inverted_index.at | 149 |
| abstract_inverted_index.by | 15, 94 |
| abstract_inverted_index.is | 146 |
| abstract_inverted_index.of | 44, 98, 143 |
| abstract_inverted_index.on | 68 |
| abstract_inverted_index.to | 41 |
| abstract_inverted_index.we | 53, 105 |
| abstract_inverted_index.(1) | 26, 75 |
| abstract_inverted_index.(2) | 33, 85 |
| abstract_inverted_index.40K | 108 |
| abstract_inverted_index.Our | 72 |
| abstract_inverted_index.RAG | 21, 31, 47, 64, 77, 116, 127, 137 |
| abstract_inverted_index.and | 62, 84, 92, 118, 133 |
| abstract_inverted_index.any | 69 |
| abstract_inverted_index.due | 40 |
| abstract_inverted_index.for | 9, 59 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.key | 7 |
| abstract_inverted_index.set | 142 |
| abstract_inverted_index.the | 42, 96 |
| abstract_inverted_index.two | 24 |
| abstract_inverted_index.They | 34 |
| abstract_inverted_index.data | 66 |
| abstract_inverted_index.face | 23 |
| abstract_inverted_index.five | 76 |
| abstract_inverted_index.from | 36, 111 |
| abstract_inverted_index.lack | 43 |
| abstract_inverted_index.only | 28 |
| abstract_inverted_index.task | 38 |
| abstract_inverted_index.that | 122 |
| abstract_inverted_index.they | 27 |
| abstract_inverted_index.this | 103 |
| abstract_inverted_index.(RAG) | 2 |
| abstract_inverted_index.LLMs' | 126 |
| abstract_inverted_index.Using | 102 |
| abstract_inverted_index.based | 67 |
| abstract_inverted_index.cover | 29 |
| abstract_inverted_index.large | 11 |
| abstract_inverted_index.these | 51 |
| abstract_inverted_index.which | 79, 88 |
| abstract_inverted_index.(LLMs) | 14 |
| abstract_inverted_index.across | 139 |
| abstract_inverted_index.method | 58 |
| abstract_inverted_index.models | 13 |
| abstract_inverted_index.source | 70 |
| abstract_inverted_index.strong | 130 |
| abstract_inverted_index.suffer | 35 |
| abstract_inverted_index.tasks. | 119, 144 |
| abstract_inverted_index.address | 50 |
| abstract_inverted_index.corpus. | 71 |
| abstract_inverted_index.current | 20 |
| abstract_inverted_index.dataset | 110 |
| abstract_inverted_index.diverse | 61, 81, 115, 141 |
| abstract_inverted_index.emerged | 4 |
| abstract_inverted_index.general | 46, 57 |
| abstract_inverted_index.limited | 30, 37 |
| abstract_inverted_index.method, | 104 |
| abstract_inverted_index.methods | 22 |
| abstract_inverted_index.propose | 54 |
| abstract_inverted_index.quality | 93 |
| abstract_inverted_index.various | 136 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.approach | 73 |
| abstract_inverted_index.covering | 114 |
| abstract_inverted_index.dataset. | 48 |
| abstract_inverted_index.enhances | 89, 125 |
| abstract_inverted_index.existing | 99 |
| abstract_inverted_index.external | 17 |
| abstract_inverted_index.language | 12 |
| abstract_inverted_index.paradigm | 8 |
| abstract_inverted_index.publicly | 147 |
| abstract_inverted_index.achieving | 129 |
| abstract_inverted_index.available | 148 |
| abstract_inverted_index.baselines | 138 |
| abstract_inverted_index.construct | 106 |
| abstract_inverted_index.datasets. | 101 |
| abstract_inverted_index.diversity | 39, 91 |
| abstract_inverted_index.encompass | 80 |
| abstract_inverted_index.enhancing | 10 |
| abstract_inverted_index.leverages | 74 |
| abstract_inverted_index.scenarios | 117 |
| abstract_inverted_index.strengths | 97 |
| abstract_inverted_index.utilizing | 95 |
| abstract_inverted_index.zero-shot | 131 |
| abstract_inverted_index.Generation | 1 |
| abstract_inverted_index.Wikipedia, | 112 |
| abstract_inverted_index.knowledge. | 18 |
| abstract_inverted_index.paradigms, | 78 |
| abstract_inverted_index.scenarios. | 32 |
| abstract_inverted_index.Experiments | 120 |
| abstract_inverted_index.demonstrate | 121 |
| abstract_inverted_index.effectively | 124 |
| abstract_inverted_index.instruction | 65, 86, 90, 100, 109 |
| abstract_inverted_index.performance | 132 |
| abstract_inverted_index.simulation, | 87 |
| abstract_inverted_index.RAG-Instruct | 123, 145 |
| abstract_inverted_index.high-quality | 63 |
| abstract_inverted_index.limitations, | 52 |
| abstract_inverted_index.limitations: | 25 |
| abstract_inverted_index.synthesizing | 60 |
| abstract_inverted_index.RAG-Instruct, | 55 |
| abstract_inverted_index.capabilities, | 128 |
| abstract_inverted_index.incorporating | 16 |
| abstract_inverted_index.outperforming | 135 |
| abstract_inverted_index.significantly | 134 |
| abstract_inverted_index.query-document | 82 |
| abstract_inverted_index.relationships, | 83 |
| abstract_inverted_index.comprehensively | 113 |
| abstract_inverted_index.Retrieval-Augmented | 0 |
| abstract_inverted_index.https://github.com/FreedomIntelligence/RAG-Instruct. | 150 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |