RaGeoSense for smart home gesture recognition using sparse millimeter wave radar point clouds Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-00065-8
With the growing demand for contactless human-computer interaction in the smart home field, gesture recognition technology shows great market potential. In this paper, a sparse millimeter wave point cloud-based gesture recognition system, RaGeoSense, is proposed, which is designed for smart home scenarios. RaGeoSense effectively improves the recognition performance and system robustness by combining multiple advanced signal processing and deep learning methods. Firstly, the system adopts three methods, namely K-mean clustering straight-through filtering, frame difference filtering and median filtering, to reduce the noise of the raw millimeter wave data, which significantly improves the quality of the point cloud data. Subsequently, the generated point cloud data are processed with sliding sequence sampling and point cloud tiling to extract the spatio-temporal features of the action. To further improve the classification performance, the system proposes an integrated model architecture that combines GBDT and XGBoost for efficient extraction of nonlinear features, and utilizes LSTM gated loop units to classify the gesture sequences, thus realizing the accurate recognition of eight different one-arm gestures. The experimental results show that RaGeoSense performs well at different distances, angles and movement speeds, with an average recognition rate of 95.2%, which is almost unaffected by the differences in personnel and has a certain degree of anti-interference ability.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-00065-8
- https://www.nature.com/articles/s41598-025-00065-8.pdf
- OA Status
- gold
- Cited By
- 1
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4410010261
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4410010261Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-00065-8Digital Object Identifier
- Title
-
RaGeoSense for smart home gesture recognition using sparse millimeter wave radar point cloudsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-05-01Full publication date if available
- Authors
-
Honghong Chen, Xiangyu Wang, Zhanjun Hao, Yan Lu, Jingyu Li, Haozhe Zhang, Ben XiList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-00065-8Publisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-00065-8.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-00065-8.pdfDirect OA link when available
- Concepts
-
Point cloud, Computer science, Extremely high frequency, Gesture, Radar, Gesture recognition, Point (geometry), Artificial intelligence, Pattern recognition (psychology), Telecommunications, Mathematics, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4410010261 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-00065-8 |
| ids.doi | https://doi.org/10.1038/s41598-025-00065-8 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40312411 |
| ids.openalex | https://openalex.org/W4410010261 |
| fwci | 6.16426319 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D005868 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Gestures |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D011825 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Radar |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000465 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Algorithms |
| mesh[4].qualifier_ui | Q000379 |
| mesh[4].descriptor_ui | D010363 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | methods |
| mesh[4].descriptor_name | Pattern Recognition, Automated |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000077321 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Deep Learning |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D012815 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Signal Processing, Computer-Assisted |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D005868 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Gestures |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D006801 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Humans |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D011825 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Radar |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D000465 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Algorithms |
| mesh[11].qualifier_ui | Q000379 |
| mesh[11].descriptor_ui | D010363 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | methods |
| mesh[11].descriptor_name | Pattern Recognition, Automated |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000077321 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Deep Learning |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D012815 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Signal Processing, Computer-Assisted |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D005868 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Gestures |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D006801 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Humans |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D011825 |
| mesh[16].is_major_topic | True |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Radar |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D000465 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Algorithms |
| mesh[18].qualifier_ui | Q000379 |
| mesh[18].descriptor_ui | D010363 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | methods |
| mesh[18].descriptor_name | Pattern Recognition, Automated |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000077321 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Deep Learning |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D012815 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Signal Processing, Computer-Assisted |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D005868 |
| mesh[21].is_major_topic | True |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Gestures |
| mesh[22].qualifier_ui | |
| mesh[22].descriptor_ui | D006801 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | |
| mesh[22].descriptor_name | Humans |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D011825 |
| mesh[23].is_major_topic | True |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Radar |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D000465 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Algorithms |
| mesh[25].qualifier_ui | Q000379 |
| mesh[25].descriptor_ui | D010363 |
| mesh[25].is_major_topic | True |
| mesh[25].qualifier_name | methods |
| mesh[25].descriptor_name | Pattern Recognition, Automated |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D000077321 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Deep Learning |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D012815 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Signal Processing, Computer-Assisted |
| type | article |
| title | RaGeoSense for smart home gesture recognition using sparse millimeter wave radar point clouds |
| awards[0].id | https://openalex.org/G4939771524 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62262061 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 15267 |
| biblio.first_page | 15267 |
| topics[0].id | https://openalex.org/T11398 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1709 |
| topics[0].subfield.display_name | Human-Computer Interaction |
| topics[0].display_name | Hand Gesture Recognition Systems |
| topics[1].id | https://openalex.org/T10326 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9926999807357788 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2208 |
| topics[1].subfield.display_name | Electrical and Electronic Engineering |
| topics[1].display_name | Indoor and Outdoor Localization Technologies |
| topics[2].id | https://openalex.org/T12740 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.987500011920929 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Gait Recognition and Analysis |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C131979681 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6800360679626465 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1899648 |
| concepts[0].display_name | Point cloud |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6513182520866394 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C45764600 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5992158055305481 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q570342 |
| concepts[2].display_name | Extremely high frequency |
| concepts[3].id | https://openalex.org/C207347870 |
| concepts[3].level | 2 |
| concepts[3].score | 0.57187819480896 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q371174 |
| concepts[3].display_name | Gesture |
| concepts[4].id | https://openalex.org/C554190296 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5361214876174927 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q47528 |
| concepts[4].display_name | Radar |
| concepts[5].id | https://openalex.org/C159437735 |
| concepts[5].level | 3 |
| concepts[5].score | 0.498593807220459 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1519524 |
| concepts[5].display_name | Gesture recognition |
| concepts[6].id | https://openalex.org/C28719098 |
| concepts[6].level | 2 |
| concepts[6].score | 0.475445955991745 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[6].display_name | Point (geometry) |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.387067049741745 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.34956201910972595 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C76155785 |
| concepts[9].level | 1 |
| concepts[9].score | 0.21009162068367004 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[9].display_name | Telecommunications |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.08557301759719849 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C2524010 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[11].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/point-cloud |
| keywords[0].score | 0.6800360679626465 |
| keywords[0].display_name | Point cloud |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6513182520866394 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/extremely-high-frequency |
| keywords[2].score | 0.5992158055305481 |
| keywords[2].display_name | Extremely high frequency |
| keywords[3].id | https://openalex.org/keywords/gesture |
| keywords[3].score | 0.57187819480896 |
| keywords[3].display_name | Gesture |
| keywords[4].id | https://openalex.org/keywords/radar |
| keywords[4].score | 0.5361214876174927 |
| keywords[4].display_name | Radar |
| keywords[5].id | https://openalex.org/keywords/gesture-recognition |
| keywords[5].score | 0.498593807220459 |
| keywords[5].display_name | Gesture recognition |
| keywords[6].id | https://openalex.org/keywords/point |
| keywords[6].score | 0.475445955991745 |
| keywords[6].display_name | Point (geometry) |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.387067049741745 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.34956201910972595 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/telecommunications |
| keywords[9].score | 0.21009162068367004 |
| keywords[9].display_name | Telecommunications |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.08557301759719849 |
| keywords[10].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-00065-8 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-00065-8.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-00065-8 |
| locations[1].id | pmid:40312411 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40312411 |
| locations[2].id | pmh:oai:doaj.org/article:24f4ecd794294270909d3857335f9fe6 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-23 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/24f4ecd794294270909d3857335f9fe6 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5036583800 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9682-5709 |
| authorships[0].author.display_name | Honghong Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I68986083 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Northwest Normal University, Gansu, China. [email protected]. |
| authorships[0].institutions[0].id | https://openalex.org/I68986083 |
| authorships[0].institutions[0].ror | https://ror.org/00gx3j908 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I68986083 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Northwest Normal University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Honghong Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Computer Science and Engineering, Northwest Normal University, Gansu, China. [email protected]. |
| authorships[1].author.id | https://openalex.org/A5100369978 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1832-0905 |
| authorships[1].author.display_name | Xiangyu Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I68986083 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Northwest Normal University, Gansu, China. |
| authorships[1].institutions[0].id | https://openalex.org/I68986083 |
| authorships[1].institutions[0].ror | https://ror.org/00gx3j908 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I68986083 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northwest Normal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xiangyu Wang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science and Engineering, Northwest Normal University, Gansu, China. |
| authorships[2].author.id | https://openalex.org/A5027196952 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Zhanjun Hao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I68986083 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Northwest Normal University, Gansu, China. |
| authorships[2].institutions[0].id | https://openalex.org/I68986083 |
| authorships[2].institutions[0].ror | https://ror.org/00gx3j908 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I68986083 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Northwest Normal University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhanjun Hao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Computer Science and Engineering, Northwest Normal University, Gansu, China. |
| authorships[3].author.id | https://openalex.org/A5076757832 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7718-7999 |
| authorships[3].author.display_name | Yan Lu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I68986083 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Northwest Normal University, Gansu, China. |
| authorships[3].institutions[0].id | https://openalex.org/I68986083 |
| authorships[3].institutions[0].ror | https://ror.org/00gx3j908 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I68986083 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Northwest Normal University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yuru Lu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Computer Science and Engineering, Northwest Normal University, Gansu, China. |
| authorships[4].author.id | https://openalex.org/A5100379870 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0136-532X |
| authorships[4].author.display_name | Jingyu Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I68986083 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Northwest Normal University, Gansu, China. |
| authorships[4].institutions[0].id | https://openalex.org/I68986083 |
| authorships[4].institutions[0].ror | https://ror.org/00gx3j908 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I68986083 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Northwest Normal University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Jingyu Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Computer Science and Engineering, Northwest Normal University, Gansu, China. |
| authorships[5].author.id | https://openalex.org/A5021555842 |
| authorships[5].author.orcid | https://orcid.org/0009-0007-7571-3098 |
| authorships[5].author.display_name | Haozhe Zhang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I68986083 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Northwest Normal University, Gansu, China. |
| authorships[5].institutions[0].id | https://openalex.org/I68986083 |
| authorships[5].institutions[0].ror | https://ror.org/00gx3j908 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I68986083 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Northwest Normal University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Haozhe Zhang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Computer Science and Engineering, Northwest Normal University, Gansu, China. |
| authorships[6].author.id | https://openalex.org/A5104286567 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Ben Xi |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I68986083 |
| authorships[6].affiliations[0].raw_affiliation_string | College of Computer Science and Engineering, Northwest Normal University, Gansu, China. |
| authorships[6].institutions[0].id | https://openalex.org/I68986083 |
| authorships[6].institutions[0].ror | https://ror.org/00gx3j908 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I68986083 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Northwest Normal University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Ben Xi |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | College of Computer Science and Engineering, Northwest Normal University, Gansu, China. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-00065-8.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | RaGeoSense for smart home gesture recognition using sparse millimeter wave radar point clouds |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11398 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1709 |
| primary_topic.subfield.display_name | Human-Computer Interaction |
| primary_topic.display_name | Hand Gesture Recognition Systems |
| related_works | https://openalex.org/W2537963312, https://openalex.org/W2902873204, https://openalex.org/W2185750513, https://openalex.org/W2010878661, https://openalex.org/W3147379364, https://openalex.org/W2026258298, https://openalex.org/W3204639664, https://openalex.org/W2970836791, https://openalex.org/W2989699735, https://openalex.org/W2369026988 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1038/s41598-025-00065-8 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-00065-8.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-00065-8 |
| primary_location.id | doi:10.1038/s41598-025-00065-8 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-00065-8.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-00065-8 |
| publication_date | 2025-05-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2180962702, https://openalex.org/W2896580704, https://openalex.org/W3019335159, https://openalex.org/W2132233302, https://openalex.org/W2506886870, https://openalex.org/W2972570007, https://openalex.org/W2471695703, https://openalex.org/W2172156083, https://openalex.org/W2141336889, https://openalex.org/W4361284091, https://openalex.org/W4312829785, https://openalex.org/W3135967623, https://openalex.org/W3132021179, https://openalex.org/W4226424792, https://openalex.org/W2091196730, https://openalex.org/W3096300328, https://openalex.org/W4312424481, https://openalex.org/W2594230123, https://openalex.org/W4226338284, https://openalex.org/W2800861103, https://openalex.org/W4362564341, https://openalex.org/W4284887573, https://openalex.org/W2153200718, https://openalex.org/W3013697788, https://openalex.org/W4381617915, https://openalex.org/W4403791131, https://openalex.org/W4393148199, https://openalex.org/W2152000601, https://openalex.org/W2102134492, https://openalex.org/W4235913915, https://openalex.org/W2912659693, https://openalex.org/W2469690627, https://openalex.org/W4399676032, https://openalex.org/W4390669383, https://openalex.org/W3085053693, https://openalex.org/W2535933534, https://openalex.org/W2560609797, https://openalex.org/W3177525997, https://openalex.org/W2963509914, https://openalex.org/W3033696290, https://openalex.org/W4391759801, https://openalex.org/W2948196881, https://openalex.org/W4210607509, https://openalex.org/W4312416759, https://openalex.org/W4403123573, https://openalex.org/W3043120882 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 23, 200 |
| abstract_inverted_index.In | 20 |
| abstract_inverted_index.To | 122 |
| abstract_inverted_index.an | 131, 183 |
| abstract_inverted_index.at | 175 |
| abstract_inverted_index.by | 51, 193 |
| abstract_inverted_index.in | 8, 196 |
| abstract_inverted_index.is | 33, 36, 190 |
| abstract_inverted_index.of | 82, 93, 119, 143, 162, 187, 203 |
| abstract_inverted_index.to | 78, 114, 152 |
| abstract_inverted_index.The | 167 |
| abstract_inverted_index.and | 48, 57, 75, 110, 138, 146, 179, 198 |
| abstract_inverted_index.are | 104 |
| abstract_inverted_index.for | 4, 38, 140 |
| abstract_inverted_index.has | 199 |
| abstract_inverted_index.raw | 84 |
| abstract_inverted_index.the | 1, 9, 45, 62, 80, 83, 91, 94, 99, 116, 120, 125, 128, 154, 159, 194 |
| abstract_inverted_index.GBDT | 137 |
| abstract_inverted_index.LSTM | 148 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.data | 103 |
| abstract_inverted_index.deep | 58 |
| abstract_inverted_index.home | 11, 40 |
| abstract_inverted_index.loop | 150 |
| abstract_inverted_index.rate | 186 |
| abstract_inverted_index.show | 170 |
| abstract_inverted_index.that | 135, 171 |
| abstract_inverted_index.this | 21 |
| abstract_inverted_index.thus | 157 |
| abstract_inverted_index.wave | 26, 86 |
| abstract_inverted_index.well | 174 |
| abstract_inverted_index.with | 106, 182 |
| abstract_inverted_index.cloud | 96, 102, 112 |
| abstract_inverted_index.data, | 87 |
| abstract_inverted_index.data. | 97 |
| abstract_inverted_index.eight | 163 |
| abstract_inverted_index.frame | 72 |
| abstract_inverted_index.gated | 149 |
| abstract_inverted_index.great | 17 |
| abstract_inverted_index.model | 133 |
| abstract_inverted_index.noise | 81 |
| abstract_inverted_index.point | 27, 95, 101, 111 |
| abstract_inverted_index.shows | 16 |
| abstract_inverted_index.smart | 10, 39 |
| abstract_inverted_index.three | 65 |
| abstract_inverted_index.units | 151 |
| abstract_inverted_index.which | 35, 88, 189 |
| abstract_inverted_index.95.2%, | 188 |
| abstract_inverted_index.K-mean | 68 |
| abstract_inverted_index.adopts | 64 |
| abstract_inverted_index.almost | 191 |
| abstract_inverted_index.angles | 178 |
| abstract_inverted_index.degree | 202 |
| abstract_inverted_index.demand | 3 |
| abstract_inverted_index.field, | 12 |
| abstract_inverted_index.market | 18 |
| abstract_inverted_index.median | 76 |
| abstract_inverted_index.namely | 67 |
| abstract_inverted_index.paper, | 22 |
| abstract_inverted_index.reduce | 79 |
| abstract_inverted_index.signal | 55 |
| abstract_inverted_index.sparse | 24 |
| abstract_inverted_index.system | 49, 63, 129 |
| abstract_inverted_index.tiling | 113 |
| abstract_inverted_index.XGBoost | 139 |
| abstract_inverted_index.action. | 121 |
| abstract_inverted_index.average | 184 |
| abstract_inverted_index.certain | 201 |
| abstract_inverted_index.extract | 115 |
| abstract_inverted_index.further | 123 |
| abstract_inverted_index.gesture | 13, 29, 155 |
| abstract_inverted_index.growing | 2 |
| abstract_inverted_index.improve | 124 |
| abstract_inverted_index.one-arm | 165 |
| abstract_inverted_index.quality | 92 |
| abstract_inverted_index.results | 169 |
| abstract_inverted_index.sliding | 107 |
| abstract_inverted_index.speeds, | 181 |
| abstract_inverted_index.system, | 31 |
| abstract_inverted_index.Firstly, | 61 |
| abstract_inverted_index.ability. | 205 |
| abstract_inverted_index.accurate | 160 |
| abstract_inverted_index.advanced | 54 |
| abstract_inverted_index.classify | 153 |
| abstract_inverted_index.combines | 136 |
| abstract_inverted_index.designed | 37 |
| abstract_inverted_index.features | 118 |
| abstract_inverted_index.improves | 44, 90 |
| abstract_inverted_index.learning | 59 |
| abstract_inverted_index.methods, | 66 |
| abstract_inverted_index.methods. | 60 |
| abstract_inverted_index.movement | 180 |
| abstract_inverted_index.multiple | 53 |
| abstract_inverted_index.performs | 173 |
| abstract_inverted_index.proposes | 130 |
| abstract_inverted_index.sampling | 109 |
| abstract_inverted_index.sequence | 108 |
| abstract_inverted_index.utilizes | 147 |
| abstract_inverted_index.combining | 52 |
| abstract_inverted_index.different | 164, 176 |
| abstract_inverted_index.efficient | 141 |
| abstract_inverted_index.features, | 145 |
| abstract_inverted_index.filtering | 74 |
| abstract_inverted_index.generated | 100 |
| abstract_inverted_index.gestures. | 166 |
| abstract_inverted_index.nonlinear | 144 |
| abstract_inverted_index.personnel | 197 |
| abstract_inverted_index.processed | 105 |
| abstract_inverted_index.proposed, | 34 |
| abstract_inverted_index.realizing | 158 |
| abstract_inverted_index.RaGeoSense | 42, 172 |
| abstract_inverted_index.clustering | 69 |
| abstract_inverted_index.difference | 73 |
| abstract_inverted_index.distances, | 177 |
| abstract_inverted_index.extraction | 142 |
| abstract_inverted_index.filtering, | 71, 77 |
| abstract_inverted_index.integrated | 132 |
| abstract_inverted_index.millimeter | 25, 85 |
| abstract_inverted_index.potential. | 19 |
| abstract_inverted_index.processing | 56 |
| abstract_inverted_index.robustness | 50 |
| abstract_inverted_index.scenarios. | 41 |
| abstract_inverted_index.sequences, | 156 |
| abstract_inverted_index.technology | 15 |
| abstract_inverted_index.unaffected | 192 |
| abstract_inverted_index.RaGeoSense, | 32 |
| abstract_inverted_index.cloud-based | 28 |
| abstract_inverted_index.contactless | 5 |
| abstract_inverted_index.differences | 195 |
| abstract_inverted_index.effectively | 43 |
| abstract_inverted_index.interaction | 7 |
| abstract_inverted_index.performance | 47 |
| abstract_inverted_index.recognition | 14, 30, 46, 161, 185 |
| abstract_inverted_index.architecture | 134 |
| abstract_inverted_index.experimental | 168 |
| abstract_inverted_index.performance, | 127 |
| abstract_inverted_index.Subsequently, | 98 |
| abstract_inverted_index.significantly | 89 |
| abstract_inverted_index.classification | 126 |
| abstract_inverted_index.human-computer | 6 |
| abstract_inverted_index.spatio-temporal | 117 |
| abstract_inverted_index.straight-through | 70 |
| abstract_inverted_index.anti-interference | 204 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/7 |
| sustainable_development_goals[0].score | 0.5 |
| sustainable_development_goals[0].display_name | Affordable and clean energy |
| citation_normalized_percentile.value | 0.88421378 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |