Rainfall Classification for Flood Prediction Using Meteorology Data of Kuching, Sarawak, Malaysia: Backpropagation vs Radial Basis Function Neural Network Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.18178/ijesd.2017.8.5.982
Rainfall is often defined by stochastic process due \nto its random characteristics, i.e. space and time dependent and it is therefore, not easy to predict. In general, rainfall is a highly \nnon-linear and complicated phenomenon. In order to acquire an accurate prediction, advanced computer modeling and simulation is required. Artificial Neural Network (ANN) has been successfully used to predict the behavior of such non-linear system. Among the different types of ANN models used, Backpropagation Network (BPN) and Radial Basis Function \nNetworks (RBFN) are the two common ANN models that had \nproduced valuable results. However, there was no study \nconducted to research on which, among these two methods, is \nthe better model for rainfall forecast. Therefore, this study will \nfill this gap by comparing the capabilities of these two ANN \nmodels in rainfall forecast using metrological data from year \n2009 to 2013 obtained from Malaysian Meteorological \nDepartment for Kuching, Sarawak, Malaysia. From the \nresearch, it is concluded that, BPN (MSE≈0.16, R≈0.86) \nperforms better as compared to RBFN (MSE≈0.22, R≈0.82). \nThe strengths and weaknesses of these models are also presented \nin this paper.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18178/ijesd.2017.8.5.982
- http://www.ijesd.org/vol8/982-S0016.pdf
- OA Status
- diamond
- Cited By
- 6
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2571082009
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2571082009Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18178/ijesd.2017.8.5.982Digital Object Identifier
- Title
-
Rainfall Classification for Flood Prediction Using Meteorology Data of Kuching, Sarawak, Malaysia: Backpropagation vs Radial Basis Function Neural NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-01-01Full publication date if available
- Authors
-
Soo See Chai, Wei Keat Wong, Kok Luong GohList of authors in order
- Landing page
-
https://doi.org/10.18178/ijesd.2017.8.5.982Publisher landing page
- PDF URL
-
https://www.ijesd.org/vol8/982-S0016.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.ijesd.org/vol8/982-S0016.pdfDirect OA link when available
- Concepts
-
Backpropagation, Artificial neural network, Radial basis function, Flood myth, Meteorology, Function (biology), Environmental science, Computer science, Artificial intelligence, Geography, Biology, Archaeology, Evolutionary biologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 1, 2022: 3, 2020: 1, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2571082009 |
|---|---|
| doi | https://doi.org/10.18178/ijesd.2017.8.5.982 |
| ids.doi | https://doi.org/10.18178/ijesd.2017.8.5.982 |
| ids.mag | 2571082009 |
| ids.openalex | https://openalex.org/W2571082009 |
| fwci | 0.29840163 |
| type | article |
| title | Rainfall Classification for Flood Prediction Using Meteorology Data of Kuching, Sarawak, Malaysia: Backpropagation vs Radial Basis Function Neural Network |
| biblio.issue | 5 |
| biblio.volume | 8 |
| biblio.last_page | 388 |
| biblio.first_page | 385 |
| topics[0].id | https://openalex.org/T11490 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Hydrological Forecasting Using AI |
| topics[1].id | https://openalex.org/T10930 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.989799976348877 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Flood Risk Assessment and Management |
| topics[2].id | https://openalex.org/T11052 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.980400025844574 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Energy Load and Power Forecasting |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C155032097 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8020752668380737 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q798503 |
| concepts[0].display_name | Backpropagation |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7184371948242188 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C98856871 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6470260620117188 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1588488 |
| concepts[2].display_name | Radial basis function |
| concepts[3].id | https://openalex.org/C74256435 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5631186962127686 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q134052 |
| concepts[3].display_name | Flood myth |
| concepts[4].id | https://openalex.org/C153294291 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5032333731651306 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[4].display_name | Meteorology |
| concepts[5].id | https://openalex.org/C14036430 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42222684621810913 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3736076 |
| concepts[5].display_name | Function (biology) |
| concepts[6].id | https://openalex.org/C39432304 |
| concepts[6].level | 0 |
| concepts[6].score | 0.41078513860702515 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[6].display_name | Environmental science |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.2587321996688843 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.2532222867012024 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.2513139843940735 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C86803240 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[10].display_name | Biology |
| concepts[11].id | https://openalex.org/C166957645 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[11].display_name | Archaeology |
| concepts[12].id | https://openalex.org/C78458016 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[12].display_name | Evolutionary biology |
| keywords[0].id | https://openalex.org/keywords/backpropagation |
| keywords[0].score | 0.8020752668380737 |
| keywords[0].display_name | Backpropagation |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.7184371948242188 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/radial-basis-function |
| keywords[2].score | 0.6470260620117188 |
| keywords[2].display_name | Radial basis function |
| keywords[3].id | https://openalex.org/keywords/flood-myth |
| keywords[3].score | 0.5631186962127686 |
| keywords[3].display_name | Flood myth |
| keywords[4].id | https://openalex.org/keywords/meteorology |
| keywords[4].score | 0.5032333731651306 |
| keywords[4].display_name | Meteorology |
| keywords[5].id | https://openalex.org/keywords/function |
| keywords[5].score | 0.42222684621810913 |
| keywords[5].display_name | Function (biology) |
| keywords[6].id | https://openalex.org/keywords/environmental-science |
| keywords[6].score | 0.41078513860702515 |
| keywords[6].display_name | Environmental science |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.2587321996688843 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.2532222867012024 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.2513139843940735 |
| keywords[9].display_name | Geography |
| language | en |
| locations[0].id | doi:10.18178/ijesd.2017.8.5.982 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764870503 |
| locations[0].source.issn | 2010-0264 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2010-0264 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Environmental Science and Development |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | http://www.ijesd.org/vol8/982-S0016.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Environmental Science and Development |
| locations[0].landing_page_url | https://doi.org/10.18178/ijesd.2017.8.5.982 |
| locations[1].id | pmh:oai:ir.unimas.my:15861 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306400335 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Unimas Institutional Repository (Universiti Malaysia Sarawak) |
| locations[1].source.host_organization | https://openalex.org/I41461413 |
| locations[1].source.host_organization_name | Universiti Malaysia Sarawak |
| locations[1].source.host_organization_lineage | https://openalex.org/I41461413 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | Article |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5011096696 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1891-5378 |
| authorships[0].author.display_name | Soo See Chai |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Soo See Chai |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5070306774 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Wei Keat Wong |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Wei Keat Wong |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5020553580 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Kok Luong Goh |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Kok Luong Goh |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://www.ijesd.org/vol8/982-S0016.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2017-01-13T00:00:00 |
| display_name | Rainfall Classification for Flood Prediction Using Meteorology Data of Kuching, Sarawak, Malaysia: Backpropagation vs Radial Basis Function Neural Network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11490 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Hydrological Forecasting Using AI |
| related_works | https://openalex.org/W2116531472, https://openalex.org/W2101929479, https://openalex.org/W2070890792, https://openalex.org/W2119056805, https://openalex.org/W765408651, https://openalex.org/W788193385, https://openalex.org/W2098176359, https://openalex.org/W2137614377, https://openalex.org/W2510819399, https://openalex.org/W1497074610 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2022 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2019 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.18178/ijesd.2017.8.5.982 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764870503 |
| best_oa_location.source.issn | 2010-0264 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2010-0264 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Environmental Science and Development |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | http://www.ijesd.org/vol8/982-S0016.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Environmental Science and Development |
| best_oa_location.landing_page_url | https://doi.org/10.18178/ijesd.2017.8.5.982 |
| primary_location.id | doi:10.18178/ijesd.2017.8.5.982 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764870503 |
| primary_location.source.issn | 2010-0264 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2010-0264 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Environmental Science and Development |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | http://www.ijesd.org/vol8/982-S0016.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Environmental Science and Development |
| primary_location.landing_page_url | https://doi.org/10.18178/ijesd.2017.8.5.982 |
| publication_date | 2017-01-01 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W4236047624, https://openalex.org/W2023430894, https://openalex.org/W2164293259, https://openalex.org/W2125318369, https://openalex.org/W6687034991, https://openalex.org/W2155889930, https://openalex.org/W2099926703, https://openalex.org/W2149390240, https://openalex.org/W1988816342, https://openalex.org/W2128011079, https://openalex.org/W6603834347, https://openalex.org/W2192521416, https://openalex.org/W2539832682, https://openalex.org/W94523489 |
| referenced_works_count | 14 |
| abstract_inverted_index.a | 28 |
| abstract_inverted_index.In | 24, 33 |
| abstract_inverted_index.an | 37 |
| abstract_inverted_index.as | 150 |
| abstract_inverted_index.by | 4, 114 |
| abstract_inverted_index.in | 122 |
| abstract_inverted_index.is | 1, 18, 27, 45, 143 |
| abstract_inverted_index.it | 17, 142 |
| abstract_inverted_index.no | 92 |
| abstract_inverted_index.of | 59, 67, 118, 159 |
| abstract_inverted_index.on | 96 |
| abstract_inverted_index.to | 22, 35, 55, 94, 130, 152 |
| abstract_inverted_index.ANN | 68, 83 |
| abstract_inverted_index.BPN | 146 |
| abstract_inverted_index.and | 13, 16, 30, 43, 74, 157 |
| abstract_inverted_index.are | 79, 162 |
| abstract_inverted_index.for | 105, 136 |
| abstract_inverted_index.gap | 113 |
| abstract_inverted_index.has | 51 |
| abstract_inverted_index.its | 8 |
| abstract_inverted_index.not | 20 |
| abstract_inverted_index.the | 57, 64, 80, 116 |
| abstract_inverted_index.two | 81, 100, 120 |
| abstract_inverted_index.was | 91 |
| abstract_inverted_index.2013 | 131 |
| abstract_inverted_index.From | 140 |
| abstract_inverted_index.RBFN | 153 |
| abstract_inverted_index.also | 163 |
| abstract_inverted_index.been | 52 |
| abstract_inverted_index.data | 127 |
| abstract_inverted_index.easy | 21 |
| abstract_inverted_index.from | 128, 133 |
| abstract_inverted_index.i.e. | 11 |
| abstract_inverted_index.such | 60 |
| abstract_inverted_index.that | 85 |
| abstract_inverted_index.this | 109, 112, 165 |
| abstract_inverted_index.time | 14 |
| abstract_inverted_index.used | 54 |
| abstract_inverted_index.(ANN) | 50 |
| abstract_inverted_index.(BPN) | 73 |
| abstract_inverted_index.Among | 63 |
| abstract_inverted_index.Basis | 76 |
| abstract_inverted_index.among | 98 |
| abstract_inverted_index.model | 104 |
| abstract_inverted_index.often | 2 |
| abstract_inverted_index.order | 34 |
| abstract_inverted_index.space | 12 |
| abstract_inverted_index.study | 110 |
| abstract_inverted_index.that, | 145 |
| abstract_inverted_index.there | 90 |
| abstract_inverted_index.these | 99, 119, 160 |
| abstract_inverted_index.types | 66 |
| abstract_inverted_index.used, | 70 |
| abstract_inverted_index.using | 125 |
| abstract_inverted_index.(RBFN) | 78 |
| abstract_inverted_index.Neural | 48 |
| abstract_inverted_index.Radial | 75 |
| abstract_inverted_index.better | 103, 149 |
| abstract_inverted_index.common | 82 |
| abstract_inverted_index.models | 69, 84, 161 |
| abstract_inverted_index.paper. | 166 |
| abstract_inverted_index.random | 9 |
| abstract_inverted_index.which, | 97 |
| abstract_inverted_index.Network | 49, 72 |
| abstract_inverted_index.acquire | 36 |
| abstract_inverted_index.defined | 3 |
| abstract_inverted_index.predict | 56 |
| abstract_inverted_index.process | 6 |
| abstract_inverted_index.system. | 62 |
| abstract_inverted_index.However, | 89 |
| abstract_inverted_index.Kuching, | 137 |
| abstract_inverted_index.Rainfall | 0 |
| abstract_inverted_index.Sarawak, | 138 |
| abstract_inverted_index.accurate | 38 |
| abstract_inverted_index.advanced | 40 |
| abstract_inverted_index.behavior | 58 |
| abstract_inverted_index.compared | 151 |
| abstract_inverted_index.computer | 41 |
| abstract_inverted_index.forecast | 124 |
| abstract_inverted_index.general, | 25 |
| abstract_inverted_index.methods, | 101 |
| abstract_inverted_index.modeling | 42 |
| abstract_inverted_index.obtained | 132 |
| abstract_inverted_index.predict. | 23 |
| abstract_inverted_index.rainfall | 26, 106, 123 |
| abstract_inverted_index.research | 95 |
| abstract_inverted_index.results. | 88 |
| abstract_inverted_index.valuable | 87 |
| abstract_inverted_index.Malaysia. | 139 |
| abstract_inverted_index.Malaysian | 134 |
| abstract_inverted_index.comparing | 115 |
| abstract_inverted_index.concluded | 144 |
| abstract_inverted_index.dependent | 15 |
| abstract_inverted_index.different | 65 |
| abstract_inverted_index.forecast. | 107 |
| abstract_inverted_index.required. | 46 |
| abstract_inverted_index.strengths | 156 |
| abstract_inverted_index.Artificial | 47 |
| abstract_inverted_index.Therefore, | 108 |
| abstract_inverted_index.non-linear | 61 |
| abstract_inverted_index.simulation | 44 |
| abstract_inverted_index.stochastic | 5 |
| abstract_inverted_index.therefore, | 19 |
| abstract_inverted_index.weaknesses | 158 |
| abstract_inverted_index.complicated | 31 |
| abstract_inverted_index.phenomenon. | 32 |
| abstract_inverted_index.prediction, | 39 |
| abstract_inverted_index.(MSE≈0.16, | 147 |
| abstract_inverted_index.(MSE≈0.22, | 154 |
| abstract_inverted_index.capabilities | 117 |
| abstract_inverted_index.due \nto | 7 |
| abstract_inverted_index.is \nthe | 102 |
| abstract_inverted_index.metrological | 126 |
| abstract_inverted_index.successfully | 53 |
| abstract_inverted_index.Backpropagation | 71 |
| abstract_inverted_index.will \nfill | 111 |
| abstract_inverted_index.year \n2009 | 129 |
| abstract_inverted_index.ANN \nmodels | 121 |
| abstract_inverted_index.characteristics, | 10 |
| abstract_inverted_index.had \nproduced | 86 |
| abstract_inverted_index.presented \nin | 164 |
| abstract_inverted_index.the \nresearch, | 141 |
| abstract_inverted_index.R≈0.82). \nThe | 155 |
| abstract_inverted_index.study \nconducted | 93 |
| abstract_inverted_index.Function \nNetworks | 77 |
| abstract_inverted_index.highly \nnon-linear | 29 |
| abstract_inverted_index.R≈0.86) \nperforms | 148 |
| abstract_inverted_index.Meteorological \nDepartment | 135 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.6600000262260437 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.56542581 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |