Random Forest-Based Machine Failure Prediction: A Performance Comparison Article Swipe
Predictive maintenance is widely used in modern industrial systems. It helps improve the working life of machines. It also reduces risk and lowers overall operating costs. Many current approaches still face problems when handling both fast processing and balanced performance across different measurements. In this research, twelve machine learning models are tested. These include standard algorithms and deep learning-based solutions. Two manufacturing datasets are used. One has more samples, while the other shows uneven class labels. Important features are selected by applying strict screening. Model parameters are fine-tuned to obtain stable results. To measure how each model performs, several metrics are used—accuracy, precision, recall, F1-score, and ROC AUC. Among all tested models, random forest shows the best results. It reaches a classification accuracy of 99.5%. At the same time, it keeps a good balance between recall and precision. This model works well when data from sensors is imbalanced. It is also strong in handling patterns that do not follow a clear rule. The system is potentially suitable for real-time deployment in industrial machines with rotating parts, as demonstrated on two representative manufacturing datasets. However, broader validation across diverse equipment types is recommended before large-scale adoption.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app15168841
- OA Status
- gold
- Cited By
- 3
- References
- 75
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413181196
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413181196Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app15168841Digital Object Identifier
- Title
-
Random Forest-Based Machine Failure Prediction: A Performance ComparisonWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-11Full publication date if available
- Authors
-
Y. Yang, Hongjun WangList of authors in order
- Landing page
-
https://doi.org/10.3390/app15168841Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.3390/app15168841Direct OA link when available
- Concepts
-
Random forest, Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
3Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3Per-year citation counts (last 5 years)
- References (count)
-
75Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413181196 |
|---|---|
| doi | https://doi.org/10.3390/app15168841 |
| ids.doi | https://doi.org/10.3390/app15168841 |
| ids.openalex | https://openalex.org/W4413181196 |
| fwci | 29.38235355 |
| type | article |
| title | Random Forest-Based Machine Failure Prediction: A Performance Comparison |
| awards[0].id | https://openalex.org/G8063415298 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 62276216 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G2303305867 |
| awards[1].funder_id | https://openalex.org/F4320329861 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2024NSFSC0501 |
| awards[1].funder_display_name | Natural Science Foundation of Sichuan Province |
| biblio.issue | 16 |
| biblio.volume | 15 |
| biblio.last_page | 8841 |
| biblio.first_page | 8841 |
| topics[0].id | https://openalex.org/T13690 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9901000261306763 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3607 |
| topics[0].subfield.display_name | Medical Laboratory Technology |
| topics[0].display_name | Quality and Safety in Healthcare |
| topics[1].id | https://openalex.org/T12111 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9794999957084656 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2209 |
| topics[1].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[1].display_name | Industrial Vision Systems and Defect Detection |
| topics[2].id | https://openalex.org/T10220 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9739000201225281 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Machine Fault Diagnosis Techniques |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320329861 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Sichuan Province |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C169258074 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5665680170059204 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[0].display_name | Random forest |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4732249975204468 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.29932937026023865 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/random-forest |
| keywords[0].score | 0.5665680170059204 |
| keywords[0].display_name | Random forest |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4732249975204468 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.29932937026023865 |
| keywords[2].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.3390/app15168841 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app15168841 |
| locations[1].id | pmh:oai:doaj.org/article:165105a0804f4770bde9d5e900bea882 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 15, Iss 16, p 8841 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/165105a0804f4770bde9d5e900bea882 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5113868047 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-4063-6912 |
| authorships[0].author.display_name | Y. Yang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I13591777 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer Science, University of Nottingham Ningbo China, Ningbo 315104, China |
| authorships[0].institutions[0].id | https://openalex.org/I13591777 |
| authorships[0].institutions[0].ror | https://ror.org/03y4dt428 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I13591777, https://openalex.org/I142263535 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | University of Nottingham Ningbo China |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yaqiao Yang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer Science, University of Nottingham Ningbo China, Ningbo 315104, China |
| authorships[1].author.id | https://openalex.org/A5100357108 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7280-2852 |
| authorships[1].author.display_name | Hongjun Wang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I13591777 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer Science, University of Nottingham Ningbo China, Ningbo 315104, China |
| authorships[1].institutions[0].id | https://openalex.org/I13591777 |
| authorships[1].institutions[0].ror | https://ror.org/03y4dt428 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I13591777, https://openalex.org/I142263535 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | University of Nottingham Ningbo China |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Hongjun Wang |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | School of Computer Science, University of Nottingham Ningbo China, Ningbo 315104, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.3390/app15168841 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Random Forest-Based Machine Failure Prediction: A Performance Comparison |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13690 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9901000261306763 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3607 |
| primary_topic.subfield.display_name | Medical Laboratory Technology |
| primary_topic.display_name | Quality and Safety in Healthcare |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W3193043704, https://openalex.org/W4386259002, https://openalex.org/W1546989560, https://openalex.org/W3171520305, https://openalex.org/W1924178503, https://openalex.org/W3135126032, https://openalex.org/W2390279801 |
| cited_by_count | 3 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/app15168841 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app15168841 |
| primary_location.id | doi:10.3390/app15168841 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app15168841 |
| publication_date | 2025-08-11 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W1999393241, https://openalex.org/W2055873761, https://openalex.org/W2998506103, https://openalex.org/W2045186954, https://openalex.org/W3147894994, https://openalex.org/W2947626232, https://openalex.org/W2810292802, https://openalex.org/W2070434857, https://openalex.org/W2125838338, https://openalex.org/W2082418604, https://openalex.org/W2119821739, https://openalex.org/W2107074288, https://openalex.org/W1506588750, https://openalex.org/W2122111042, https://openalex.org/W2734669076, https://openalex.org/W4299689471, https://openalex.org/W6611762666, https://openalex.org/W2911964244, https://openalex.org/W2295598076, https://openalex.org/W6610017368, https://openalex.org/W1678356000, https://openalex.org/W2112796928, https://openalex.org/W2064675550, https://openalex.org/W2261059368, https://openalex.org/W1988790447, https://openalex.org/W2782812883, https://openalex.org/W6739901393, https://openalex.org/W6737947904, https://openalex.org/W2148143831, https://openalex.org/W2118978333, https://openalex.org/W2282821441, https://openalex.org/W6684859321, https://openalex.org/W2971797472, https://openalex.org/W2972137370, https://openalex.org/W6675354045, https://openalex.org/W6766978945, https://openalex.org/W4243367342, https://openalex.org/W2320553484, https://openalex.org/W2092829070, https://openalex.org/W7066667914, https://openalex.org/W6632075054, https://openalex.org/W4210306310, https://openalex.org/W6637386731, https://openalex.org/W1981552604, https://openalex.org/W6674385629, https://openalex.org/W2797928606, https://openalex.org/W6602002561, https://openalex.org/W2158698691, https://openalex.org/W2155653793, https://openalex.org/W2095649738, https://openalex.org/W2788276261, https://openalex.org/W2944364052, https://openalex.org/W2111619626, https://openalex.org/W2114623221, https://openalex.org/W2099419573, https://openalex.org/W2416799949, https://openalex.org/W3135186239, https://openalex.org/W2787894218, https://openalex.org/W2542459869, https://openalex.org/W3138819813, https://openalex.org/W2892741787, https://openalex.org/W2168231600, https://openalex.org/W273955616, https://openalex.org/W1680392829, https://openalex.org/W4295312788, https://openalex.org/W349770100, https://openalex.org/W4385245566, https://openalex.org/W2097998348, https://openalex.org/W3099802519, https://openalex.org/W1534477342, https://openalex.org/W2997591727, https://openalex.org/W2962862931, https://openalex.org/W2998216295, https://openalex.org/W46659105, https://openalex.org/W3104887532 |
| referenced_works_count | 75 |
| abstract_inverted_index.a | 120, 131, 159 |
| abstract_inverted_index.At | 125 |
| abstract_inverted_index.In | 43 |
| abstract_inverted_index.It | 9, 17, 118, 148 |
| abstract_inverted_index.To | 92 |
| abstract_inverted_index.as | 176 |
| abstract_inverted_index.by | 80 |
| abstract_inverted_index.do | 156 |
| abstract_inverted_index.in | 5, 152, 170 |
| abstract_inverted_index.is | 2, 146, 149, 164, 190 |
| abstract_inverted_index.it | 129 |
| abstract_inverted_index.of | 15, 123 |
| abstract_inverted_index.on | 178 |
| abstract_inverted_index.to | 88 |
| abstract_inverted_index.One | 65 |
| abstract_inverted_index.ROC | 106 |
| abstract_inverted_index.The | 162 |
| abstract_inverted_index.Two | 60 |
| abstract_inverted_index.all | 109 |
| abstract_inverted_index.and | 21, 37, 56, 105, 136 |
| abstract_inverted_index.are | 50, 63, 78, 86, 100 |
| abstract_inverted_index.for | 167 |
| abstract_inverted_index.has | 66 |
| abstract_inverted_index.how | 94 |
| abstract_inverted_index.not | 157 |
| abstract_inverted_index.the | 12, 70, 115, 126 |
| abstract_inverted_index.two | 179 |
| abstract_inverted_index.AUC. | 107 |
| abstract_inverted_index.Many | 26 |
| abstract_inverted_index.This | 138 |
| abstract_inverted_index.also | 18, 150 |
| abstract_inverted_index.best | 116 |
| abstract_inverted_index.both | 34 |
| abstract_inverted_index.data | 143 |
| abstract_inverted_index.deep | 57 |
| abstract_inverted_index.each | 95 |
| abstract_inverted_index.face | 30 |
| abstract_inverted_index.fast | 35 |
| abstract_inverted_index.from | 144 |
| abstract_inverted_index.good | 132 |
| abstract_inverted_index.life | 14 |
| abstract_inverted_index.more | 67 |
| abstract_inverted_index.risk | 20 |
| abstract_inverted_index.same | 127 |
| abstract_inverted_index.that | 155 |
| abstract_inverted_index.this | 44 |
| abstract_inverted_index.used | 4 |
| abstract_inverted_index.well | 141 |
| abstract_inverted_index.when | 32, 142 |
| abstract_inverted_index.with | 173 |
| abstract_inverted_index.Among | 108 |
| abstract_inverted_index.Model | 84 |
| abstract_inverted_index.These | 52 |
| abstract_inverted_index.class | 74 |
| abstract_inverted_index.clear | 160 |
| abstract_inverted_index.helps | 10 |
| abstract_inverted_index.keeps | 130 |
| abstract_inverted_index.model | 96, 139 |
| abstract_inverted_index.other | 71 |
| abstract_inverted_index.rule. | 161 |
| abstract_inverted_index.shows | 72, 114 |
| abstract_inverted_index.still | 29 |
| abstract_inverted_index.time, | 128 |
| abstract_inverted_index.types | 189 |
| abstract_inverted_index.used. | 64 |
| abstract_inverted_index.while | 69 |
| abstract_inverted_index.works | 140 |
| abstract_inverted_index.99.5%. | 124 |
| abstract_inverted_index.across | 40, 186 |
| abstract_inverted_index.before | 192 |
| abstract_inverted_index.costs. | 25 |
| abstract_inverted_index.follow | 158 |
| abstract_inverted_index.forest | 113 |
| abstract_inverted_index.lowers | 22 |
| abstract_inverted_index.models | 49 |
| abstract_inverted_index.modern | 6 |
| abstract_inverted_index.obtain | 89 |
| abstract_inverted_index.parts, | 175 |
| abstract_inverted_index.random | 112 |
| abstract_inverted_index.recall | 135 |
| abstract_inverted_index.stable | 90 |
| abstract_inverted_index.strict | 82 |
| abstract_inverted_index.strong | 151 |
| abstract_inverted_index.system | 163 |
| abstract_inverted_index.tested | 110 |
| abstract_inverted_index.twelve | 46 |
| abstract_inverted_index.uneven | 73 |
| abstract_inverted_index.widely | 3 |
| abstract_inverted_index.balance | 133 |
| abstract_inverted_index.between | 134 |
| abstract_inverted_index.broader | 184 |
| abstract_inverted_index.current | 27 |
| abstract_inverted_index.diverse | 187 |
| abstract_inverted_index.improve | 11 |
| abstract_inverted_index.include | 53 |
| abstract_inverted_index.labels. | 75 |
| abstract_inverted_index.machine | 47 |
| abstract_inverted_index.measure | 93 |
| abstract_inverted_index.metrics | 99 |
| abstract_inverted_index.models, | 111 |
| abstract_inverted_index.overall | 23 |
| abstract_inverted_index.reaches | 119 |
| abstract_inverted_index.recall, | 103 |
| abstract_inverted_index.reduces | 19 |
| abstract_inverted_index.sensors | 145 |
| abstract_inverted_index.several | 98 |
| abstract_inverted_index.tested. | 51 |
| abstract_inverted_index.working | 13 |
| abstract_inverted_index.However, | 183 |
| abstract_inverted_index.accuracy | 122 |
| abstract_inverted_index.applying | 81 |
| abstract_inverted_index.balanced | 38 |
| abstract_inverted_index.datasets | 62 |
| abstract_inverted_index.features | 77 |
| abstract_inverted_index.handling | 33, 153 |
| abstract_inverted_index.learning | 48 |
| abstract_inverted_index.machines | 172 |
| abstract_inverted_index.patterns | 154 |
| abstract_inverted_index.problems | 31 |
| abstract_inverted_index.results. | 91, 117 |
| abstract_inverted_index.rotating | 174 |
| abstract_inverted_index.samples, | 68 |
| abstract_inverted_index.selected | 79 |
| abstract_inverted_index.standard | 54 |
| abstract_inverted_index.suitable | 166 |
| abstract_inverted_index.systems. | 8 |
| abstract_inverted_index.F1-score, | 104 |
| abstract_inverted_index.Important | 76 |
| abstract_inverted_index.adoption. | 194 |
| abstract_inverted_index.datasets. | 182 |
| abstract_inverted_index.different | 41 |
| abstract_inverted_index.equipment | 188 |
| abstract_inverted_index.machines. | 16 |
| abstract_inverted_index.operating | 24 |
| abstract_inverted_index.performs, | 97 |
| abstract_inverted_index.real-time | 168 |
| abstract_inverted_index.research, | 45 |
| abstract_inverted_index.Predictive | 0 |
| abstract_inverted_index.algorithms | 55 |
| abstract_inverted_index.approaches | 28 |
| abstract_inverted_index.deployment | 169 |
| abstract_inverted_index.fine-tuned | 87 |
| abstract_inverted_index.industrial | 7, 171 |
| abstract_inverted_index.parameters | 85 |
| abstract_inverted_index.precision, | 102 |
| abstract_inverted_index.precision. | 137 |
| abstract_inverted_index.processing | 36 |
| abstract_inverted_index.screening. | 83 |
| abstract_inverted_index.solutions. | 59 |
| abstract_inverted_index.validation | 185 |
| abstract_inverted_index.imbalanced. | 147 |
| abstract_inverted_index.large-scale | 193 |
| abstract_inverted_index.maintenance | 1 |
| abstract_inverted_index.performance | 39 |
| abstract_inverted_index.potentially | 165 |
| abstract_inverted_index.recommended | 191 |
| abstract_inverted_index.demonstrated | 177 |
| abstract_inverted_index.manufacturing | 61, 181 |
| abstract_inverted_index.measurements. | 42 |
| abstract_inverted_index.classification | 121 |
| abstract_inverted_index.learning-based | 58 |
| abstract_inverted_index.representative | 180 |
| abstract_inverted_index.used—accuracy, | 101 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 96 |
| corresponding_author_ids | https://openalex.org/A5100357108 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I13591777 |
| citation_normalized_percentile.value | 0.99087983 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |