Rapeseed Stand Count Estimation at Leaf Development Stages With UAV Imagery and Convolutional Neural Networks Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.3389/fpls.2020.00617
Rapeseed is an important oil crop in China. Timely estimation of rapeseed stand count at early growth stages provides useful information for precision fertilization, irrigation, and yield prediction. Based on the nature of rapeseed, the number of tillering leaves is strongly related to its growth stages. However, no field study has been reported on estimating rapeseed stand count by the number of leaves recognized with convolutional neural networks (CNNs) in unmanned aerial vehicle (UAV) imagery. The objectives of this study were to provide a case for rapeseed stand counting with reference to the existing knowledge of the number of leaves per plant and to determine the optimal timing for counting after rapeseed emergence at leaf development stages with one to seven leaves. A CNN model was developed to recognize leaves in UAV-based imagery, and rapeseed stand count was estimated with the number of recognized leaves. The performance of leaf detection was compared using sample sizes of 16, 24, 32, 40, and 48 pixels. Leaf overcounting occurred when a leaf was much bigger than others as this bigger leaf was recognized as several smaller leaves. Results showed CNN-based leaf count achieved the best performance at the four- to six-leaf stage with F-scores greater than 90% after calibration with overcounting rate. On average, 806 out of 812 plants were correctly estimated on 53 days after planting (DAP) at the four- to six-leaf stage, which was considered as the optimal observation timing. For the 32-pixel patch size, root mean square error (RMSE) was 9 plants with relative RMSE (rRMSE) of 2.22% on 53 DAP, while the mean RMSE was 12 with mean rRMSE of 2.89% for all patch sizes. A sample size of 32 pixels was suggested to be optimal accounting for balancing performance and efficiency. The results of this study confirmed that it was feasible to estimate rapeseed stand count in field automatically, rapidly, and accurately. This study provided a special perspective in phenotyping and cultivation management for estimating seedling count for crops that have recognizable leaves at their early growth stage, such as soybean and potato.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fpls.2020.00617
- https://www.frontiersin.org/articles/10.3389/fpls.2020.00617/pdf
- OA Status
- gold
- Cited By
- 36
- References
- 73
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3034275306
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3034275306Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fpls.2020.00617Digital Object Identifier
- Title
-
Rapeseed Stand Count Estimation at Leaf Development Stages With UAV Imagery and Convolutional Neural NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-06-10Full publication date if available
- Authors
-
Jian Zhang, Biquan Zhao, Chenghai Yang, Yeyin Shi, Qingxi Liao, Guangsheng Zhou, Chufeng Wang, Tianjin Xie, Zhao Jiang, Dongyan Zhang, Wanneng Yang, Chenglong Huang, Jing XieList of authors in order
- Landing page
-
https://doi.org/10.3389/fpls.2020.00617Publisher landing page
- PDF URL
-
https://www.frontiersin.org/articles/10.3389/fpls.2020.00617/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/articles/10.3389/fpls.2020.00617/pdfDirect OA link when available
- Concepts
-
Rapeseed, Sowing, Convolutional neural network, Irrigation, Human fertilization, Mathematics, Biology, Agronomy, Statistics, Computer science, Artificial intelligenceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
36Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 7, 2024: 13, 2023: 7, 2022: 5, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
73Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3034275306 |
|---|---|
| doi | https://doi.org/10.3389/fpls.2020.00617 |
| ids.doi | https://doi.org/10.3389/fpls.2020.00617 |
| ids.mag | 3034275306 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/32587594 |
| ids.openalex | https://openalex.org/W3034275306 |
| fwci | 2.3616305 |
| type | article |
| title | Rapeseed Stand Count Estimation at Leaf Development Stages With UAV Imagery and Convolutional Neural Networks |
| biblio.issue | |
| biblio.volume | 11 |
| biblio.last_page | 617 |
| biblio.first_page | 617 |
| topics[0].id | https://openalex.org/T10111 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Remote Sensing in Agriculture |
| topics[1].id | https://openalex.org/T14365 |
| topics[1].field.id | https://openalex.org/fields/11 |
| topics[1].field.display_name | Agricultural and Biological Sciences |
| topics[1].score | 0.9987999796867371 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1110 |
| topics[1].subfield.display_name | Plant Science |
| topics[1].display_name | Leaf Properties and Growth Measurement |
| topics[2].id | https://openalex.org/T10616 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9958999752998352 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Smart Agriculture and AI |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C2779726014 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9287859201431274 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q177932 |
| concepts[0].display_name | Rapeseed |
| concepts[1].id | https://openalex.org/C168741863 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5945728421211243 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q777671 |
| concepts[1].display_name | Sowing |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5632303953170776 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C88862950 |
| concepts[3].level | 2 |
| concepts[3].score | 0.49288058280944824 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11453 |
| concepts[3].display_name | Irrigation |
| concepts[4].id | https://openalex.org/C88972607 |
| concepts[4].level | 2 |
| concepts[4].score | 0.47736263275146484 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2666904 |
| concepts[4].display_name | Human fertilization |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4132886826992035 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C86803240 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4093056619167328 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[6].display_name | Biology |
| concepts[7].id | https://openalex.org/C6557445 |
| concepts[7].level | 1 |
| concepts[7].score | 0.37416720390319824 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[7].display_name | Agronomy |
| concepts[8].id | https://openalex.org/C105795698 |
| concepts[8].level | 1 |
| concepts[8].score | 0.34263020753860474 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[8].display_name | Statistics |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.23826846480369568 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.22371691465377808 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| keywords[0].id | https://openalex.org/keywords/rapeseed |
| keywords[0].score | 0.9287859201431274 |
| keywords[0].display_name | Rapeseed |
| keywords[1].id | https://openalex.org/keywords/sowing |
| keywords[1].score | 0.5945728421211243 |
| keywords[1].display_name | Sowing |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.5632303953170776 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/irrigation |
| keywords[3].score | 0.49288058280944824 |
| keywords[3].display_name | Irrigation |
| keywords[4].id | https://openalex.org/keywords/human-fertilization |
| keywords[4].score | 0.47736263275146484 |
| keywords[4].display_name | Human fertilization |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.4132886826992035 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/biology |
| keywords[6].score | 0.4093056619167328 |
| keywords[6].display_name | Biology |
| keywords[7].id | https://openalex.org/keywords/agronomy |
| keywords[7].score | 0.37416720390319824 |
| keywords[7].display_name | Agronomy |
| keywords[8].id | https://openalex.org/keywords/statistics |
| keywords[8].score | 0.34263020753860474 |
| keywords[8].display_name | Statistics |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.23826846480369568 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.22371691465377808 |
| keywords[10].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.3389/fpls.2020.00617 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2493613807 |
| locations[0].source.issn | 1664-462X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1664-462X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Plant Science |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/articles/10.3389/fpls.2020.00617/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Plant Science |
| locations[0].landing_page_url | https://doi.org/10.3389/fpls.2020.00617 |
| locations[1].id | pmid:32587594 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in plant science |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/32587594 |
| locations[2].id | pmh:oai:digitalcommons.unl.edu:biosysengfacpub-1724 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306400577 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | Lincoln (University of Nebraska) |
| locations[2].source.host_organization | https://openalex.org/I114395901 |
| locations[2].source.host_organization_name | University of Nebraska–Lincoln |
| locations[2].source.host_organization_lineage | https://openalex.org/I114395901 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Department of Biological Systems Engineering: Papers and Publications |
| locations[2].landing_page_url | https://digitalcommons.unl.edu/biosysengfacpub/712 |
| locations[3].id | pmh:oai:doaj.org/article:9c2e65fd75064a8582dfe2bd061a0c00 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | cc-by-sa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Frontiers in Plant Science, Vol 11 (2020) |
| locations[3].landing_page_url | https://doaj.org/article/9c2e65fd75064a8582dfe2bd061a0c00 |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:7298076 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Front Plant Sci |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7298076 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100409910 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9890-3598 |
| authorships[0].author.display_name | Jian Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204823248 |
| authorships[0].affiliations[0].raw_affiliation_string | Macro Agriculture Research Institute, College of Resource and Environment, Huazhong Agricultural University, China |
| authorships[0].affiliations[1].raw_affiliation_string | Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China |
| authorships[0].institutions[0].id | https://openalex.org/I204823248 |
| authorships[0].institutions[0].ror | https://ror.org/023b72294 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204823248 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Huazhong Agricultural University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jian Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China, Macro Agriculture Research Institute, College of Resource and Environment, Huazhong Agricultural University, China |
| authorships[1].author.id | https://openalex.org/A5008393672 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9710-744X |
| authorships[1].author.display_name | Biquan Zhao |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I204823248 |
| authorships[1].affiliations[1].raw_affiliation_string | Macro Agriculture Research Institute, College of Resource and Environment, Huazhong Agricultural University, China |
| authorships[1].institutions[0].id | https://openalex.org/I204823248 |
| authorships[1].institutions[0].ror | https://ror.org/023b72294 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I204823248 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Huazhong Agricultural University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Biquan Zhao |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China, Macro Agriculture Research Institute, College of Resource and Environment, Huazhong Agricultural University, China |
| authorships[2].author.id | https://openalex.org/A5049743100 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9898-628X |
| authorships[2].author.display_name | Chenghai Yang |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1312222531 |
| authorships[2].affiliations[0].raw_affiliation_string | Aerial Application Technology Research Unit, USDA-Agricultural Research Service, United States |
| authorships[2].institutions[0].id | https://openalex.org/I1312222531 |
| authorships[2].institutions[0].ror | https://ror.org/02d2m2044 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I1312222531, https://openalex.org/I1336096307 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Agricultural Research Service |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Chenghai Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Aerial Application Technology Research Unit, USDA-Agricultural Research Service, United States |
| authorships[3].author.id | https://openalex.org/A5068713577 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3964-2855 |
| authorships[3].author.display_name | Yeyin Shi |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I114395901 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Biological Systems Engineering, University of Nebraska–Lincoln, United States |
| authorships[3].institutions[0].id | https://openalex.org/I114395901 |
| authorships[3].institutions[0].ror | https://ror.org/043mer456 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I114395901 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | University of Nebraska–Lincoln |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yeyin Shi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Biological Systems Engineering, University of Nebraska–Lincoln, United States |
| authorships[4].author.id | https://openalex.org/A5102292570 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Qingxi Liao |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I204823248 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Engineering, Huazhong Agricultural University, China |
| authorships[4].institutions[0].id | https://openalex.org/I204823248 |
| authorships[4].institutions[0].ror | https://ror.org/023b72294 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I204823248 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Huazhong Agricultural University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Qingxi Liao |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Engineering, Huazhong Agricultural University, China |
| authorships[5].author.id | https://openalex.org/A5110800237 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Guangsheng Zhou |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I204823248 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Plant Science and Technology, Huazhong Agricultural University, China |
| authorships[5].institutions[0].id | https://openalex.org/I204823248 |
| authorships[5].institutions[0].ror | https://ror.org/023b72294 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I204823248 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Huazhong Agricultural University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Guangsheng Zhou |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Plant Science and Technology, Huazhong Agricultural University, China |
| authorships[6].author.id | https://openalex.org/A5048407252 |
| authorships[6].author.orcid | https://orcid.org/0009-0003-4684-3564 |
| authorships[6].author.display_name | Chufeng Wang |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I204823248 |
| authorships[6].affiliations[0].raw_affiliation_string | Macro Agriculture Research Institute, College of Resource and Environment, Huazhong Agricultural University, China |
| authorships[6].affiliations[1].raw_affiliation_string | Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China |
| authorships[6].institutions[0].id | https://openalex.org/I204823248 |
| authorships[6].institutions[0].ror | https://ror.org/023b72294 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I204823248 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | Huazhong Agricultural University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Chufeng Wang |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China, Macro Agriculture Research Institute, College of Resource and Environment, Huazhong Agricultural University, China |
| authorships[7].author.id | https://openalex.org/A5015044538 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Tianjin Xie |
| authorships[7].countries | CN |
| authorships[7].affiliations[0].raw_affiliation_string | Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I204823248 |
| authorships[7].affiliations[1].raw_affiliation_string | Macro Agriculture Research Institute, College of Resource and Environment, Huazhong Agricultural University, China |
| authorships[7].institutions[0].id | https://openalex.org/I204823248 |
| authorships[7].institutions[0].ror | https://ror.org/023b72294 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I204823248 |
| authorships[7].institutions[0].country_code | CN |
| authorships[7].institutions[0].display_name | Huazhong Agricultural University |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Tianjin Xie |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China, Macro Agriculture Research Institute, College of Resource and Environment, Huazhong Agricultural University, China |
| authorships[8].author.id | https://openalex.org/A5068784585 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-8686-2784 |
| authorships[8].author.display_name | Zhao Jiang |
| authorships[8].countries | CN |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I204823248 |
| authorships[8].affiliations[0].raw_affiliation_string | Macro Agriculture Research Institute, College of Resource and Environment, Huazhong Agricultural University, China |
| authorships[8].affiliations[1].raw_affiliation_string | Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China |
| authorships[8].institutions[0].id | https://openalex.org/I204823248 |
| authorships[8].institutions[0].ror | https://ror.org/023b72294 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I204823248 |
| authorships[8].institutions[0].country_code | CN |
| authorships[8].institutions[0].display_name | Huazhong Agricultural University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Zhao Jiang |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, China, Macro Agriculture Research Institute, College of Resource and Environment, Huazhong Agricultural University, China |
| authorships[9].author.id | https://openalex.org/A5100740817 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-3509-7482 |
| authorships[9].author.display_name | Dongyan Zhang |
| authorships[9].countries | CN |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I143868143 |
| authorships[9].affiliations[0].raw_affiliation_string | Anhui Engineering Laboratory of Agro-Ecological Big Data, Anhui University, China |
| authorships[9].institutions[0].id | https://openalex.org/I143868143 |
| authorships[9].institutions[0].ror | https://ror.org/05th6yx34 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I143868143 |
| authorships[9].institutions[0].country_code | CN |
| authorships[9].institutions[0].display_name | Anhui University |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Dongyan Zhang |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Anhui Engineering Laboratory of Agro-Ecological Big Data, Anhui University, China |
| authorships[10].author.id | https://openalex.org/A5032529074 |
| authorships[10].author.orcid | https://orcid.org/0000-0003-1095-1355 |
| authorships[10].author.display_name | Wanneng Yang |
| authorships[10].countries | CN |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I204823248 |
| authorships[10].affiliations[0].raw_affiliation_string | College of Plant Science and Technology, Huazhong Agricultural University, China |
| authorships[10].institutions[0].id | https://openalex.org/I204823248 |
| authorships[10].institutions[0].ror | https://ror.org/023b72294 |
| authorships[10].institutions[0].type | education |
| authorships[10].institutions[0].lineage | https://openalex.org/I204823248 |
| authorships[10].institutions[0].country_code | CN |
| authorships[10].institutions[0].display_name | Huazhong Agricultural University |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Wanneng Yang |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | College of Plant Science and Technology, Huazhong Agricultural University, China |
| authorships[11].author.id | https://openalex.org/A5038493861 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-4603-2254 |
| authorships[11].author.display_name | Chenglong Huang |
| authorships[11].countries | CN |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I204823248 |
| authorships[11].affiliations[0].raw_affiliation_string | College of Engineering, Huazhong Agricultural University, China |
| authorships[11].institutions[0].id | https://openalex.org/I204823248 |
| authorships[11].institutions[0].ror | https://ror.org/023b72294 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I204823248 |
| authorships[11].institutions[0].country_code | CN |
| authorships[11].institutions[0].display_name | Huazhong Agricultural University |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Chenglong Huang |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | College of Engineering, Huazhong Agricultural University, China |
| authorships[12].author.id | https://openalex.org/A5017934461 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-3572-8611 |
| authorships[12].author.display_name | Jing Xie |
| authorships[12].countries | CN |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I204823248 |
| authorships[12].affiliations[0].raw_affiliation_string | College of Science, Huazhong Agricultural University, China |
| authorships[12].institutions[0].id | https://openalex.org/I204823248 |
| authorships[12].institutions[0].ror | https://ror.org/023b72294 |
| authorships[12].institutions[0].type | education |
| authorships[12].institutions[0].lineage | https://openalex.org/I204823248 |
| authorships[12].institutions[0].country_code | CN |
| authorships[12].institutions[0].display_name | Huazhong Agricultural University |
| authorships[12].author_position | last |
| authorships[12].raw_author_name | Jing Xie |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | College of Science, Huazhong Agricultural University, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/articles/10.3389/fpls.2020.00617/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Rapeseed Stand Count Estimation at Leaf Development Stages With UAV Imagery and Convolutional Neural Networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10111 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Remote Sensing in Agriculture |
| related_works | https://openalex.org/W2361438098, https://openalex.org/W2347369540, https://openalex.org/W2382423801, https://openalex.org/W3198848480, https://openalex.org/W3012403332, https://openalex.org/W2361404876, https://openalex.org/W2366538473, https://openalex.org/W2992328719, https://openalex.org/W3209450016, https://openalex.org/W2385251456 |
| cited_by_count | 36 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 7 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 13 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 7 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 5 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 2 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 2 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3389/fpls.2020.00617 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2493613807 |
| best_oa_location.source.issn | 1664-462X |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1664-462X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Plant Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fpls.2020.00617/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Plant Science |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fpls.2020.00617 |
| primary_location.id | doi:10.3389/fpls.2020.00617 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2493613807 |
| primary_location.source.issn | 1664-462X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1664-462X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Plant Science |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/articles/10.3389/fpls.2020.00617/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Plant Science |
| primary_location.landing_page_url | https://doi.org/10.3389/fpls.2020.00617 |
| publication_date | 2020-06-10 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2067877300, https://openalex.org/W2044252996, https://openalex.org/W1991739869, https://openalex.org/W378343460, https://openalex.org/W1984792953, https://openalex.org/W2412068723, https://openalex.org/W2057890665, https://openalex.org/W2591299766, https://openalex.org/W3020828471, https://openalex.org/W2076510829, https://openalex.org/W2901867974, https://openalex.org/W2413910992, https://openalex.org/W1993142827, https://openalex.org/W2890513934, https://openalex.org/W2086330580, https://openalex.org/W2087991080, https://openalex.org/W1995494326, https://openalex.org/W2618732405, https://openalex.org/W2148333466, https://openalex.org/W2799461311, https://openalex.org/W2470803522, https://openalex.org/W6725828322, https://openalex.org/W2624387057, https://openalex.org/W2025384267, https://openalex.org/W2616728375, https://openalex.org/W2565950292, https://openalex.org/W2156585878, https://openalex.org/W2616262716, https://openalex.org/W2774368713, https://openalex.org/W2648242067, https://openalex.org/W2899128648, https://openalex.org/W2767657507, https://openalex.org/W2075922710, https://openalex.org/W2128866545, https://openalex.org/W2910438511, https://openalex.org/W2572077381, https://openalex.org/W6745737171, https://openalex.org/W2412887352, https://openalex.org/W1693171120, https://openalex.org/W2603364874, https://openalex.org/W2770754200, https://openalex.org/W1964249847, https://openalex.org/W2755135010, https://openalex.org/W6650313187, https://openalex.org/W2343818649, https://openalex.org/W2479938810, https://openalex.org/W2084228143, https://openalex.org/W2729018917, https://openalex.org/W2799540953, https://openalex.org/W2793474046, https://openalex.org/W1980140622, https://openalex.org/W2028766141, https://openalex.org/W2058147639, https://openalex.org/W2611988762, https://openalex.org/W2168036630, https://openalex.org/W2768265868, https://openalex.org/W2728224506, https://openalex.org/W2053465517, https://openalex.org/W2531338938, https://openalex.org/W2808198070, https://openalex.org/W2074464158, https://openalex.org/W1910776219, https://openalex.org/W6719470112, https://openalex.org/W2892250657, https://openalex.org/W2322627548, https://openalex.org/W2512130891, https://openalex.org/W4243467964, https://openalex.org/W2103079830, https://openalex.org/W2000200144, https://openalex.org/W2767103329, https://openalex.org/W80240199, https://openalex.org/W2953027458, https://openalex.org/W2463631526 |
| referenced_works_count | 73 |
| abstract_inverted_index.9 | 250 |
| abstract_inverted_index.A | 122, 276 |
| abstract_inverted_index.a | 83, 167, 317 |
| abstract_inverted_index.12 | 266 |
| abstract_inverted_index.32 | 280 |
| abstract_inverted_index.48 | 161 |
| abstract_inverted_index.53 | 220, 259 |
| abstract_inverted_index.On | 209 |
| abstract_inverted_index.an | 2 |
| abstract_inverted_index.as | 174, 180, 234, 341 |
| abstract_inverted_index.at | 14, 113, 193, 225, 335 |
| abstract_inverted_index.be | 285 |
| abstract_inverted_index.by | 58 |
| abstract_inverted_index.in | 6, 69, 130, 308, 320 |
| abstract_inverted_index.is | 1, 39 |
| abstract_inverted_index.it | 300 |
| abstract_inverted_index.no | 47 |
| abstract_inverted_index.of | 10, 32, 36, 61, 77, 95, 98, 142, 147, 155, 213, 256, 270, 279, 295 |
| abstract_inverted_index.on | 29, 53, 219, 258 |
| abstract_inverted_index.to | 42, 81, 91, 103, 119, 127, 196, 228, 284, 303 |
| abstract_inverted_index.16, | 156 |
| abstract_inverted_index.24, | 157 |
| abstract_inverted_index.32, | 158 |
| abstract_inverted_index.40, | 159 |
| abstract_inverted_index.806 | 211 |
| abstract_inverted_index.812 | 214 |
| abstract_inverted_index.90% | 203 |
| abstract_inverted_index.CNN | 123 |
| abstract_inverted_index.For | 239 |
| abstract_inverted_index.The | 75, 145, 293 |
| abstract_inverted_index.all | 273 |
| abstract_inverted_index.and | 25, 102, 133, 160, 291, 312, 322, 343 |
| abstract_inverted_index.for | 21, 85, 108, 272, 288, 325, 329 |
| abstract_inverted_index.has | 50 |
| abstract_inverted_index.its | 43 |
| abstract_inverted_index.oil | 4 |
| abstract_inverted_index.one | 118 |
| abstract_inverted_index.out | 212 |
| abstract_inverted_index.per | 100 |
| abstract_inverted_index.the | 30, 34, 59, 92, 96, 105, 140, 190, 194, 226, 235, 240, 262 |
| abstract_inverted_index.was | 125, 137, 150, 169, 178, 232, 249, 265, 282, 301 |
| abstract_inverted_index.DAP, | 260 |
| abstract_inverted_index.Leaf | 163 |
| abstract_inverted_index.RMSE | 254, 264 |
| abstract_inverted_index.This | 314 |
| abstract_inverted_index.been | 51 |
| abstract_inverted_index.best | 191 |
| abstract_inverted_index.case | 84 |
| abstract_inverted_index.crop | 5 |
| abstract_inverted_index.days | 221 |
| abstract_inverted_index.have | 332 |
| abstract_inverted_index.leaf | 114, 148, 168, 177, 187 |
| abstract_inverted_index.mean | 245, 263, 268 |
| abstract_inverted_index.much | 170 |
| abstract_inverted_index.root | 244 |
| abstract_inverted_index.size | 278 |
| abstract_inverted_index.such | 340 |
| abstract_inverted_index.than | 172, 202 |
| abstract_inverted_index.that | 299, 331 |
| abstract_inverted_index.this | 78, 175, 296 |
| abstract_inverted_index.were | 80, 216 |
| abstract_inverted_index.when | 166 |
| abstract_inverted_index.with | 64, 89, 117, 139, 199, 206, 252, 267 |
| abstract_inverted_index.(DAP) | 224 |
| abstract_inverted_index.(UAV) | 73 |
| abstract_inverted_index.2.22% | 257 |
| abstract_inverted_index.2.89% | 271 |
| abstract_inverted_index.Based | 28 |
| abstract_inverted_index.after | 110, 204, 222 |
| abstract_inverted_index.count | 13, 57, 136, 188, 307, 328 |
| abstract_inverted_index.crops | 330 |
| abstract_inverted_index.early | 15, 337 |
| abstract_inverted_index.error | 247 |
| abstract_inverted_index.field | 48, 309 |
| abstract_inverted_index.four- | 195, 227 |
| abstract_inverted_index.model | 124 |
| abstract_inverted_index.patch | 242, 274 |
| abstract_inverted_index.plant | 101 |
| abstract_inverted_index.rRMSE | 269 |
| abstract_inverted_index.rate. | 208 |
| abstract_inverted_index.seven | 120 |
| abstract_inverted_index.size, | 243 |
| abstract_inverted_index.sizes | 154 |
| abstract_inverted_index.stage | 198 |
| abstract_inverted_index.stand | 12, 56, 87, 135, 306 |
| abstract_inverted_index.study | 49, 79, 297, 315 |
| abstract_inverted_index.their | 336 |
| abstract_inverted_index.using | 152 |
| abstract_inverted_index.which | 231 |
| abstract_inverted_index.while | 261 |
| abstract_inverted_index.yield | 26 |
| abstract_inverted_index.(CNNs) | 68 |
| abstract_inverted_index.(RMSE) | 248 |
| abstract_inverted_index.China. | 7 |
| abstract_inverted_index.Timely | 8 |
| abstract_inverted_index.aerial | 71 |
| abstract_inverted_index.bigger | 171, 176 |
| abstract_inverted_index.growth | 16, 44, 338 |
| abstract_inverted_index.leaves | 38, 62, 99, 129, 334 |
| abstract_inverted_index.nature | 31 |
| abstract_inverted_index.neural | 66 |
| abstract_inverted_index.number | 35, 60, 97, 141 |
| abstract_inverted_index.others | 173 |
| abstract_inverted_index.pixels | 281 |
| abstract_inverted_index.plants | 215, 251 |
| abstract_inverted_index.sample | 153, 277 |
| abstract_inverted_index.showed | 185 |
| abstract_inverted_index.sizes. | 275 |
| abstract_inverted_index.square | 246 |
| abstract_inverted_index.stage, | 230, 339 |
| abstract_inverted_index.stages | 17, 116 |
| abstract_inverted_index.timing | 107 |
| abstract_inverted_index.useful | 19 |
| abstract_inverted_index.(rRMSE) | 255 |
| abstract_inverted_index.Results | 184 |
| abstract_inverted_index.greater | 201 |
| abstract_inverted_index.leaves. | 121, 144, 183 |
| abstract_inverted_index.optimal | 106, 236, 286 |
| abstract_inverted_index.pixels. | 162 |
| abstract_inverted_index.potato. | 344 |
| abstract_inverted_index.provide | 82 |
| abstract_inverted_index.related | 41 |
| abstract_inverted_index.results | 294 |
| abstract_inverted_index.several | 181 |
| abstract_inverted_index.smaller | 182 |
| abstract_inverted_index.soybean | 342 |
| abstract_inverted_index.special | 318 |
| abstract_inverted_index.stages. | 45 |
| abstract_inverted_index.timing. | 238 |
| abstract_inverted_index.vehicle | 72 |
| abstract_inverted_index.32-pixel | 241 |
| abstract_inverted_index.F-scores | 200 |
| abstract_inverted_index.However, | 46 |
| abstract_inverted_index.Rapeseed | 0 |
| abstract_inverted_index.achieved | 189 |
| abstract_inverted_index.average, | 210 |
| abstract_inverted_index.compared | 151 |
| abstract_inverted_index.counting | 88, 109 |
| abstract_inverted_index.estimate | 304 |
| abstract_inverted_index.existing | 93 |
| abstract_inverted_index.feasible | 302 |
| abstract_inverted_index.imagery, | 132 |
| abstract_inverted_index.imagery. | 74 |
| abstract_inverted_index.networks | 67 |
| abstract_inverted_index.occurred | 165 |
| abstract_inverted_index.planting | 223 |
| abstract_inverted_index.provided | 316 |
| abstract_inverted_index.provides | 18 |
| abstract_inverted_index.rapeseed | 11, 55, 86, 111, 134, 305 |
| abstract_inverted_index.rapidly, | 311 |
| abstract_inverted_index.relative | 253 |
| abstract_inverted_index.reported | 52 |
| abstract_inverted_index.seedling | 327 |
| abstract_inverted_index.six-leaf | 197, 229 |
| abstract_inverted_index.strongly | 40 |
| abstract_inverted_index.unmanned | 70 |
| abstract_inverted_index.CNN-based | 186 |
| abstract_inverted_index.UAV-based | 131 |
| abstract_inverted_index.balancing | 289 |
| abstract_inverted_index.confirmed | 298 |
| abstract_inverted_index.correctly | 217 |
| abstract_inverted_index.detection | 149 |
| abstract_inverted_index.determine | 104 |
| abstract_inverted_index.developed | 126 |
| abstract_inverted_index.emergence | 112 |
| abstract_inverted_index.estimated | 138, 218 |
| abstract_inverted_index.important | 3 |
| abstract_inverted_index.knowledge | 94 |
| abstract_inverted_index.precision | 22 |
| abstract_inverted_index.rapeseed, | 33 |
| abstract_inverted_index.recognize | 128 |
| abstract_inverted_index.reference | 90 |
| abstract_inverted_index.suggested | 283 |
| abstract_inverted_index.tillering | 37 |
| abstract_inverted_index.accounting | 287 |
| abstract_inverted_index.considered | 233 |
| abstract_inverted_index.estimating | 54, 326 |
| abstract_inverted_index.estimation | 9 |
| abstract_inverted_index.management | 324 |
| abstract_inverted_index.objectives | 76 |
| abstract_inverted_index.recognized | 63, 143, 179 |
| abstract_inverted_index.accurately. | 313 |
| abstract_inverted_index.calibration | 205 |
| abstract_inverted_index.cultivation | 323 |
| abstract_inverted_index.development | 115 |
| abstract_inverted_index.efficiency. | 292 |
| abstract_inverted_index.information | 20 |
| abstract_inverted_index.irrigation, | 24 |
| abstract_inverted_index.observation | 237 |
| abstract_inverted_index.performance | 146, 192, 290 |
| abstract_inverted_index.perspective | 319 |
| abstract_inverted_index.phenotyping | 321 |
| abstract_inverted_index.prediction. | 27 |
| abstract_inverted_index.overcounting | 164, 207 |
| abstract_inverted_index.recognizable | 333 |
| abstract_inverted_index.convolutional | 65 |
| abstract_inverted_index.automatically, | 310 |
| abstract_inverted_index.fertilization, | 23 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 93 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 13 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.6299999952316284 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.88860912 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |