Rapid Bone Scintigraphy Enhancement via Semantic Prior Distillation from Segment Anything Model Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2503.02321
Rapid bone scintigraphy is crucial for diagnosing skeletal disorders and detecting tumor metastases in children, as it shortens scan duration and reduces discomfort. However, accelerated acquisition often degrades image quality, impairing the visibility of fine anatomical details and potentially compromising diagnosis. To overcome this limitation, we introduce the first application of SAM-based semantic priors for medical image restoration, utilizing the Segment Anything Model (SAM) to enhance pediatric rapid bone scintigraphy. Our approach employs two cascaded networks, $f^{IR1}$ and $f^{IR2}$, supported by three specialized modules: a Semantic Prior Integration (SPI) module, a Semantic Knowledge Distillation (SKD) module, and a Semantic Consistency Module (SCM). The SPI and SKD modules inject domain-specific semantic cues from a fine-tuned SAM, while the SCM preserves coherent semantic feature representations across both cascaded stages. Moreover, we present RBS, a novel Rapid Bone Scintigraphy dataset comprising paired standard (20 cm/min) and rapid (40 cm/min) scans from 137 pediatric patients aged 0.5 - 16 years, making it the first dataset tailored for pediatric rapid bone scintigraphy restoration. Extensive experiments on both a public endoscopic dataset and our RBS dataset demonstrate that our method consistently surpasses existing techniques in PSNR, SSIM, FID, and LPIPS metrics.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2503.02321
- https://arxiv.org/pdf/2503.02321
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415145335
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415145335Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2503.02321Digital Object Identifier
- Title
-
Rapid Bone Scintigraphy Enhancement via Semantic Prior Distillation from Segment Anything ModelWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-04Full publication date if available
- Authors
-
Pengchen Liang, Lei Shi, Huiping Yao, Bin Pu, Jianguo Chen, Lei Zhao, Haishan Huang, Zhuangzhuang Chen, Zhaozhao Xu, Liming Xu, Qing Chang, Yiwei LiList of authors in order
- Landing page
-
https://arxiv.org/abs/2503.02321Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2503.02321Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2503.02321Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415145335 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2503.02321 |
| ids.doi | https://doi.org/10.48550/arxiv.2503.02321 |
| ids.openalex | https://openalex.org/W4415145335 |
| fwci | |
| type | preprint |
| title | Rapid Bone Scintigraphy Enhancement via Semantic Prior Distillation from Segment Anything Model |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12422 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.930899977684021 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2741 |
| topics[0].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[0].display_name | Radiomics and Machine Learning in Medical Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2503.02321 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2503.02321 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2503.02321 |
| locations[1].id | doi:10.48550/arxiv.2503.02321 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2503.02321 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5080438062 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7475-373X |
| authorships[0].author.display_name | Pengchen Liang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liang, Pengchen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5014936207 |
| authorships[1].author.orcid | https://orcid.org/0009-0002-8383-0757 |
| authorships[1].author.display_name | Lei Shi |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Shi, Leijun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5070739987 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7031-6436 |
| authorships[2].author.display_name | Huiping Yao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yao, Huiping |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5022349009 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4959-8432 |
| authorships[3].author.display_name | Bin Pu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Pu, Bin |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100435606 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6838-4309 |
| authorships[4].author.display_name | Jianguo Chen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chen, Jianguo |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101762938 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-6336-048X |
| authorships[5].author.display_name | Lei Zhao |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zhao, Lei |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5058283876 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Haishan Huang |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Huang, Haishan |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5008344915 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-0336-1181 |
| authorships[7].author.display_name | Zhuangzhuang Chen |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Chen, Zhuangzhuang |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5046193582 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-7811-3799 |
| authorships[8].author.display_name | Zhaozhao Xu |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Xu, Zhaozhao |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5055320676 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-2974-2097 |
| authorships[9].author.display_name | Liming Xu |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Xu, Lite |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5070457572 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-7568-4070 |
| authorships[10].author.display_name | Qing Chang |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Chang, Qing |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5101551084 |
| authorships[11].author.orcid | https://orcid.org/0009-0008-2043-9842 |
| authorships[11].author.display_name | Yiwei Li |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Li, Yiwei |
| authorships[11].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2503.02321 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-14T00:00:00 |
| display_name | Rapid Bone Scintigraphy Enhancement via Semantic Prior Distillation from Segment Anything Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12422 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.930899977684021 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2741 |
| primary_topic.subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| primary_topic.display_name | Radiomics and Machine Learning in Medical Imaging |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2503.02321 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2503.02321 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2503.02321 |
| primary_location.id | pmh:oai:arXiv.org:2503.02321 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2503.02321 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2503.02321 |
| publication_date | 2025-03-04 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 153 |
| abstract_inverted_index.a | 84, 90, 97, 112, 131, 172 |
| abstract_inverted_index.16 | 154 |
| abstract_inverted_index.To | 41 |
| abstract_inverted_index.as | 15 |
| abstract_inverted_index.by | 80 |
| abstract_inverted_index.in | 13, 188 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.it | 16, 157 |
| abstract_inverted_index.of | 33, 50 |
| abstract_inverted_index.on | 170 |
| abstract_inverted_index.to | 64 |
| abstract_inverted_index.we | 45, 128 |
| abstract_inverted_index.(20 | 140 |
| abstract_inverted_index.(40 | 144 |
| abstract_inverted_index.0.5 | 152 |
| abstract_inverted_index.137 | 148 |
| abstract_inverted_index.Our | 70 |
| abstract_inverted_index.RBS | 178 |
| abstract_inverted_index.SCM | 117 |
| abstract_inverted_index.SKD | 105 |
| abstract_inverted_index.SPI | 103 |
| abstract_inverted_index.The | 102 |
| abstract_inverted_index.and | 9, 20, 37, 77, 96, 104, 142, 176, 192 |
| abstract_inverted_index.for | 5, 54, 162 |
| abstract_inverted_index.our | 177, 182 |
| abstract_inverted_index.the | 31, 47, 59, 116, 158 |
| abstract_inverted_index.two | 73 |
| abstract_inverted_index.Bone | 134 |
| abstract_inverted_index.FID, | 191 |
| abstract_inverted_index.RBS, | 130 |
| abstract_inverted_index.SAM, | 114 |
| abstract_inverted_index.aged | 151 |
| abstract_inverted_index.bone | 1, 68, 165 |
| abstract_inverted_index.both | 124, 171 |
| abstract_inverted_index.cues | 110 |
| abstract_inverted_index.fine | 34 |
| abstract_inverted_index.from | 111, 147 |
| abstract_inverted_index.scan | 18 |
| abstract_inverted_index.that | 181 |
| abstract_inverted_index.this | 43 |
| abstract_inverted_index.(SAM) | 63 |
| abstract_inverted_index.(SKD) | 94 |
| abstract_inverted_index.(SPI) | 88 |
| abstract_inverted_index.LPIPS | 193 |
| abstract_inverted_index.Model | 62 |
| abstract_inverted_index.PSNR, | 189 |
| abstract_inverted_index.Prior | 86 |
| abstract_inverted_index.Rapid | 0, 133 |
| abstract_inverted_index.SSIM, | 190 |
| abstract_inverted_index.first | 48, 159 |
| abstract_inverted_index.image | 28, 56 |
| abstract_inverted_index.novel | 132 |
| abstract_inverted_index.often | 26 |
| abstract_inverted_index.rapid | 67, 143, 164 |
| abstract_inverted_index.scans | 146 |
| abstract_inverted_index.three | 81 |
| abstract_inverted_index.tumor | 11 |
| abstract_inverted_index.while | 115 |
| abstract_inverted_index.(SCM). | 101 |
| abstract_inverted_index.Module | 100 |
| abstract_inverted_index.across | 123 |
| abstract_inverted_index.inject | 107 |
| abstract_inverted_index.making | 156 |
| abstract_inverted_index.method | 183 |
| abstract_inverted_index.paired | 138 |
| abstract_inverted_index.priors | 53 |
| abstract_inverted_index.public | 173 |
| abstract_inverted_index.years, | 155 |
| abstract_inverted_index.Segment | 60 |
| abstract_inverted_index.cm/min) | 141, 145 |
| abstract_inverted_index.crucial | 4 |
| abstract_inverted_index.dataset | 136, 160, 175, 179 |
| abstract_inverted_index.details | 36 |
| abstract_inverted_index.employs | 72 |
| abstract_inverted_index.enhance | 65 |
| abstract_inverted_index.feature | 121 |
| abstract_inverted_index.medical | 55 |
| abstract_inverted_index.module, | 89, 95 |
| abstract_inverted_index.modules | 106 |
| abstract_inverted_index.present | 129 |
| abstract_inverted_index.reduces | 21 |
| abstract_inverted_index.stages. | 126 |
| abstract_inverted_index.Anything | 61 |
| abstract_inverted_index.However, | 23 |
| abstract_inverted_index.Semantic | 85, 91, 98 |
| abstract_inverted_index.approach | 71 |
| abstract_inverted_index.cascaded | 74, 125 |
| abstract_inverted_index.coherent | 119 |
| abstract_inverted_index.degrades | 27 |
| abstract_inverted_index.duration | 19 |
| abstract_inverted_index.existing | 186 |
| abstract_inverted_index.metrics. | 194 |
| abstract_inverted_index.modules: | 83 |
| abstract_inverted_index.overcome | 42 |
| abstract_inverted_index.patients | 150 |
| abstract_inverted_index.quality, | 29 |
| abstract_inverted_index.semantic | 52, 109, 120 |
| abstract_inverted_index.shortens | 17 |
| abstract_inverted_index.skeletal | 7 |
| abstract_inverted_index.standard | 139 |
| abstract_inverted_index.tailored | 161 |
| abstract_inverted_index.$f^{IR1}$ | 76 |
| abstract_inverted_index.Extensive | 168 |
| abstract_inverted_index.Knowledge | 92 |
| abstract_inverted_index.Moreover, | 127 |
| abstract_inverted_index.SAM-based | 51 |
| abstract_inverted_index.children, | 14 |
| abstract_inverted_index.detecting | 10 |
| abstract_inverted_index.disorders | 8 |
| abstract_inverted_index.impairing | 30 |
| abstract_inverted_index.introduce | 46 |
| abstract_inverted_index.networks, | 75 |
| abstract_inverted_index.pediatric | 66, 149, 163 |
| abstract_inverted_index.preserves | 118 |
| abstract_inverted_index.supported | 79 |
| abstract_inverted_index.surpasses | 185 |
| abstract_inverted_index.utilizing | 58 |
| abstract_inverted_index.$f^{IR2}$, | 78 |
| abstract_inverted_index.anatomical | 35 |
| abstract_inverted_index.comprising | 137 |
| abstract_inverted_index.diagnosing | 6 |
| abstract_inverted_index.diagnosis. | 40 |
| abstract_inverted_index.endoscopic | 174 |
| abstract_inverted_index.fine-tuned | 113 |
| abstract_inverted_index.metastases | 12 |
| abstract_inverted_index.techniques | 187 |
| abstract_inverted_index.visibility | 32 |
| abstract_inverted_index.Consistency | 99 |
| abstract_inverted_index.Integration | 87 |
| abstract_inverted_index.accelerated | 24 |
| abstract_inverted_index.acquisition | 25 |
| abstract_inverted_index.application | 49 |
| abstract_inverted_index.demonstrate | 180 |
| abstract_inverted_index.discomfort. | 22 |
| abstract_inverted_index.experiments | 169 |
| abstract_inverted_index.limitation, | 44 |
| abstract_inverted_index.potentially | 38 |
| abstract_inverted_index.specialized | 82 |
| abstract_inverted_index.Distillation | 93 |
| abstract_inverted_index.Scintigraphy | 135 |
| abstract_inverted_index.compromising | 39 |
| abstract_inverted_index.consistently | 184 |
| abstract_inverted_index.restoration, | 57 |
| abstract_inverted_index.restoration. | 167 |
| abstract_inverted_index.scintigraphy | 2, 166 |
| abstract_inverted_index.scintigraphy. | 69 |
| abstract_inverted_index.domain-specific | 108 |
| abstract_inverted_index.representations | 122 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 12 |
| citation_normalized_percentile |