Rapid Prediction of High-Resolution 3D Ship Airwake in the Glide Path Based on CFD, BP Neural Network, and DWL Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3390/app15158336
To meet the requirements of the high spatiotemporal three-dimensional (3D) airflow field within the glide path corridor during carrier-based aircraft/unmanned aerial vehicles (UAVs) landings, this paper proposes a prediction method for high spatiotemporal resolution 3D ship airwake along the glide path by integrating computational fluid dynamics (CFD), backpropagation (BP) neural network, and Doppler wind lidar (DWL). Firstly, taking the conceptual design aircraft carrier model as the research object, CFD numerical simulations of the ship airwake within the glide path region are carried out using the Poly-Hexcore grid and the detached eddy simulation (DES)/the Reynolds-averaged Navier–Stokes (RANS) turbulence models. Then, using the high spatial resolution ship airwake along the glide path obtained from steady RANS computations under different inflow conditions as a sample dataset, the BP neural network prediction models were trained and optimized. Along the ideal glide path within 200 m behind the stern, the correlation coefficients between the predicted results of the BP neural network and the headwind, crosswind, and vertical wind of the testing samples exceeded 0.95, 0.91, and 0.82, respectively. Finally, using the inflow speed and direction with high temporal resolution from the bow direction obtained by the shipborne DWL as input, the BP prediction models can achieve accurate prediction of the 3D ship airwake along the glide path with high spatiotemporal resolution (3 m, 3 Hz).
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/app15158336
- https://www.mdpi.com/2076-3417/15/15/8336/pdf?version=1753537554
- OA Status
- gold
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412698178
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412698178Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/app15158336Digital Object Identifier
- Title
-
Rapid Prediction of High-Resolution 3D Ship Airwake in the Glide Path Based on CFD, BP Neural Network, and DWLWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-26Full publication date if available
- Authors
-
Qingsong Liu, Gan Ren, Dingfu Zhou, Bo Liu, Zexiang LiList of authors in order
- Landing page
-
https://doi.org/10.3390/app15158336Publisher landing page
- PDF URL
-
https://www.mdpi.com/2076-3417/15/15/8336/pdf?version=1753537554Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2076-3417/15/15/8336/pdf?version=1753537554Direct OA link when available
- Concepts
-
Reynolds-averaged Navier–Stokes equations, Computational fluid dynamics, Inflow, Artificial neural network, Marine engineering, Path (computing), Turbulence, Computer science, Simulation, Aerospace engineering, Meteorology, Engineering, Artificial intelligence, Physics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412698178 |
|---|---|
| doi | https://doi.org/10.3390/app15158336 |
| ids.doi | https://doi.org/10.3390/app15158336 |
| ids.openalex | https://openalex.org/W4412698178 |
| fwci | 0.0 |
| type | article |
| title | Rapid Prediction of High-Resolution 3D Ship Airwake in the Glide Path Based on CFD, BP Neural Network, and DWL |
| awards[0].id | https://openalex.org/G3000895212 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 12404374 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G385579678 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 42406184 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G3021694051 |
| awards[2].funder_id | https://openalex.org/F4320335787 |
| awards[2].display_name | |
| awards[2].funder_award_id | 24CAFUC04034 |
| awards[2].funder_display_name | Fundamental Research Funds for the Central Universities |
| biblio.issue | 15 |
| biblio.volume | 15 |
| biblio.last_page | 8336 |
| biblio.first_page | 8336 |
| topics[0].id | https://openalex.org/T12125 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Aerospace and Aviation Technology |
| topics[1].id | https://openalex.org/T10466 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9901000261306763 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1902 |
| topics[1].subfield.display_name | Atmospheric Science |
| topics[1].display_name | Meteorological Phenomena and Simulations |
| topics[2].id | https://openalex.org/T11604 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9879000186920166 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2212 |
| topics[2].subfield.display_name | Ocean Engineering |
| topics[2].display_name | Ship Hydrodynamics and Maneuverability |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335787 |
| funders[1].ror | |
| funders[1].display_name | Fundamental Research Funds for the Central Universities |
| is_xpac | False |
| apc_list.value | 2300 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2490 |
| apc_paid.value | 2300 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2490 |
| concepts[0].id | https://openalex.org/C32526432 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7795186042785645 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1536235 |
| concepts[0].display_name | Reynolds-averaged Navier–Stokes equations |
| concepts[1].id | https://openalex.org/C1633027 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7603777647018433 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q815820 |
| concepts[1].display_name | Computational fluid dynamics |
| concepts[2].id | https://openalex.org/C2776132308 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5742889046669006 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11070850 |
| concepts[2].display_name | Inflow |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5257607102394104 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C199104240 |
| concepts[4].level | 1 |
| concepts[4].score | 0.49843859672546387 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q118291 |
| concepts[4].display_name | Marine engineering |
| concepts[5].id | https://openalex.org/C2777735758 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4784712493419647 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q817765 |
| concepts[5].display_name | Path (computing) |
| concepts[6].id | https://openalex.org/C196558001 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4265805184841156 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q190132 |
| concepts[6].display_name | Turbulence |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.3880358636379242 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C44154836 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32894212007522583 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q45045 |
| concepts[8].display_name | Simulation |
| concepts[9].id | https://openalex.org/C146978453 |
| concepts[9].level | 1 |
| concepts[9].score | 0.30167919397354126 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[9].display_name | Aerospace engineering |
| concepts[10].id | https://openalex.org/C153294291 |
| concepts[10].level | 1 |
| concepts[10].score | 0.28231292963027954 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[10].display_name | Meteorology |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.25412502884864807 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.18271586298942566 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C121332964 |
| concepts[13].level | 0 |
| concepts[13].score | 0.1279587745666504 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[13].display_name | Physics |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/reynolds-averaged-navier–stokes-equations |
| keywords[0].score | 0.7795186042785645 |
| keywords[0].display_name | Reynolds-averaged Navier–Stokes equations |
| keywords[1].id | https://openalex.org/keywords/computational-fluid-dynamics |
| keywords[1].score | 0.7603777647018433 |
| keywords[1].display_name | Computational fluid dynamics |
| keywords[2].id | https://openalex.org/keywords/inflow |
| keywords[2].score | 0.5742889046669006 |
| keywords[2].display_name | Inflow |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.5257607102394104 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/marine-engineering |
| keywords[4].score | 0.49843859672546387 |
| keywords[4].display_name | Marine engineering |
| keywords[5].id | https://openalex.org/keywords/path |
| keywords[5].score | 0.4784712493419647 |
| keywords[5].display_name | Path (computing) |
| keywords[6].id | https://openalex.org/keywords/turbulence |
| keywords[6].score | 0.4265805184841156 |
| keywords[6].display_name | Turbulence |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.3880358636379242 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/simulation |
| keywords[8].score | 0.32894212007522583 |
| keywords[8].display_name | Simulation |
| keywords[9].id | https://openalex.org/keywords/aerospace-engineering |
| keywords[9].score | 0.30167919397354126 |
| keywords[9].display_name | Aerospace engineering |
| keywords[10].id | https://openalex.org/keywords/meteorology |
| keywords[10].score | 0.28231292963027954 |
| keywords[10].display_name | Meteorology |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.25412502884864807 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.18271586298942566 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/physics |
| keywords[13].score | 0.1279587745666504 |
| keywords[13].display_name | Physics |
| language | en |
| locations[0].id | doi:10.3390/app15158336 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210205812 |
| locations[0].source.issn | 2076-3417 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2076-3417 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Applied Sciences |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2076-3417/15/15/8336/pdf?version=1753537554 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Applied Sciences |
| locations[0].landing_page_url | https://doi.org/10.3390/app15158336 |
| locations[1].id | pmh:oai:doaj.org/article:36f73101d0ba4bce8fd82ad0070f207a |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Applied Sciences, Vol 15, Iss 15, p 8336 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/36f73101d0ba4bce8fd82ad0070f207a |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5100714477 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6689-6407 |
| authorships[0].author.display_name | Qingsong Liu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I58995867 |
| authorships[0].affiliations[0].raw_affiliation_string | Lidar Imaging Detection Technology and Equipment Airworthiness Testing Laboratory, Civil Aviation Flight University of China, Guanghan 618307, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210128284 |
| authorships[0].affiliations[1].raw_affiliation_string | Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China |
| authorships[0].affiliations[2].raw_affiliation_string | Lidar and Device Laboratory, Southwest Institute of Technical Physics, Chengdu 610041, China |
| authorships[0].institutions[0].id | https://openalex.org/I19820366 |
| authorships[0].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I58995867 |
| authorships[0].institutions[1].ror | https://ror.org/01xyb1v19 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I58995867 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Civil Aviation Flight University of China |
| authorships[0].institutions[2].id | https://openalex.org/I4210128284 |
| authorships[0].institutions[2].ror | https://ror.org/02bn68w95 |
| authorships[0].institutions[2].type | facility |
| authorships[0].institutions[2].lineage | https://openalex.org/I19820366, https://openalex.org/I4210128284 |
| authorships[0].institutions[2].country_code | CN |
| authorships[0].institutions[2].display_name | Institute of Optics and Electronics, Chinese Academy of Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qingsong Liu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China, Lidar Imaging Detection Technology and Equipment Airworthiness Testing Laboratory, Civil Aviation Flight University of China, Guanghan 618307, China, Lidar and Device Laboratory, Southwest Institute of Technical Physics, Chengdu 610041, China |
| authorships[1].author.id | https://openalex.org/A5070030934 |
| authorships[1].author.orcid | https://orcid.org/0009-0005-3430-2087 |
| authorships[1].author.display_name | Gan Ren |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I58995867 |
| authorships[1].affiliations[0].raw_affiliation_string | Lidar Imaging Detection Technology and Equipment Airworthiness Testing Laboratory, Civil Aviation Flight University of China, Guanghan 618307, China |
| authorships[1].institutions[0].id | https://openalex.org/I58995867 |
| authorships[1].institutions[0].ror | https://ror.org/01xyb1v19 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I58995867 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Civil Aviation Flight University of China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gan Ren |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Lidar Imaging Detection Technology and Equipment Airworthiness Testing Laboratory, Civil Aviation Flight University of China, Guanghan 618307, China |
| authorships[2].author.id | https://openalex.org/A5009611484 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3412-3984 |
| authorships[2].author.display_name | Dingfu Zhou |
| authorships[2].affiliations[0].raw_affiliation_string | Lidar and Device Laboratory, Southwest Institute of Technical Physics, Chengdu 610041, China |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dingfu Zhou |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Lidar and Device Laboratory, Southwest Institute of Technical Physics, Chengdu 610041, China |
| authorships[3].author.id | https://openalex.org/A5118093111 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3084-0126 |
| authorships[3].author.display_name | Bo Liu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210128284 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China |
| authorships[3].institutions[0].id | https://openalex.org/I19820366 |
| authorships[3].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[3].institutions[1].id | https://openalex.org/I4210128284 |
| authorships[3].institutions[1].ror | https://ror.org/02bn68w95 |
| authorships[3].institutions[1].type | facility |
| authorships[3].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210128284 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Institute of Optics and Electronics, Chinese Academy of Sciences |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Bo Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China |
| authorships[4].author.id | https://openalex.org/A5100784553 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7920-6436 |
| authorships[4].author.display_name | Zexiang Li |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I58995867 |
| authorships[4].affiliations[0].raw_affiliation_string | Lidar Imaging Detection Technology and Equipment Airworthiness Testing Laboratory, Civil Aviation Flight University of China, Guanghan 618307, China |
| authorships[4].institutions[0].id | https://openalex.org/I58995867 |
| authorships[4].institutions[0].ror | https://ror.org/01xyb1v19 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I58995867 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Civil Aviation Flight University of China |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Zida Li |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Lidar Imaging Detection Technology and Equipment Airworthiness Testing Laboratory, Civil Aviation Flight University of China, Guanghan 618307, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2076-3417/15/15/8336/pdf?version=1753537554 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Rapid Prediction of High-Resolution 3D Ship Airwake in the Glide Path Based on CFD, BP Neural Network, and DWL |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12125 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Aerospace and Aviation Technology |
| related_works | https://openalex.org/W2911627970, https://openalex.org/W3095032300, https://openalex.org/W142238503, https://openalex.org/W2045242506, https://openalex.org/W2744033844, https://openalex.org/W2094226075, https://openalex.org/W2045524054, https://openalex.org/W2554666141, https://openalex.org/W2037287082, https://openalex.org/W3160799850 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.3390/app15158336 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210205812 |
| best_oa_location.source.issn | 2076-3417 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2076-3417 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Applied Sciences |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2076-3417/15/15/8336/pdf?version=1753537554 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Applied Sciences |
| best_oa_location.landing_page_url | https://doi.org/10.3390/app15158336 |
| primary_location.id | doi:10.3390/app15158336 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210205812 |
| primary_location.source.issn | 2076-3417 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2076-3417 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Applied Sciences |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2076-3417/15/15/8336/pdf?version=1753537554 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Applied Sciences |
| primary_location.landing_page_url | https://doi.org/10.3390/app15158336 |
| publication_date | 2025-07-26 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W6902284961, https://openalex.org/W2315973690, https://openalex.org/W1947847510, https://openalex.org/W4390595007, https://openalex.org/W2056306874, https://openalex.org/W2982611693, https://openalex.org/W4405726660, https://openalex.org/W1177895030, https://openalex.org/W3015802723, https://openalex.org/W2139429876, https://openalex.org/W4405810251, https://openalex.org/W3179037477, https://openalex.org/W2801458586, https://openalex.org/W4281679113, https://openalex.org/W4401647141, https://openalex.org/W4404210284, https://openalex.org/W2152809432, https://openalex.org/W2809322569, https://openalex.org/W2127315491, https://openalex.org/W6740123429, https://openalex.org/W6803747355, https://openalex.org/W1969908931, https://openalex.org/W2330183917, https://openalex.org/W2347406042, https://openalex.org/W2120682378, https://openalex.org/W2933477938, https://openalex.org/W4403159567, https://openalex.org/W4405153760, https://openalex.org/W4408961707, https://openalex.org/W4399035833, https://openalex.org/W4409150342, https://openalex.org/W2684324328, https://openalex.org/W3213031394 |
| referenced_works_count | 33 |
| abstract_inverted_index.3 | 218 |
| abstract_inverted_index.a | 27, 120 |
| abstract_inverted_index.m | 140 |
| abstract_inverted_index.(3 | 216 |
| abstract_inverted_index.3D | 34, 205 |
| abstract_inverted_index.BP | 124, 153, 196 |
| abstract_inverted_index.To | 0 |
| abstract_inverted_index.as | 64, 119, 193 |
| abstract_inverted_index.by | 41, 189 |
| abstract_inverted_index.m, | 217 |
| abstract_inverted_index.of | 4, 71, 151, 163, 203 |
| abstract_inverted_index.200 | 139 |
| abstract_inverted_index.CFD | 68 |
| abstract_inverted_index.DWL | 192 |
| abstract_inverted_index.and | 51, 87, 131, 156, 160, 170, 178 |
| abstract_inverted_index.are | 80 |
| abstract_inverted_index.bow | 186 |
| abstract_inverted_index.can | 199 |
| abstract_inverted_index.for | 30 |
| abstract_inverted_index.out | 82 |
| abstract_inverted_index.the | 2, 5, 13, 38, 58, 65, 72, 76, 84, 88, 100, 107, 123, 134, 142, 144, 148, 152, 157, 164, 175, 185, 190, 195, 204, 209 |
| abstract_inverted_index.(3D) | 9 |
| abstract_inverted_index.(BP) | 48 |
| abstract_inverted_index.Hz). | 219 |
| abstract_inverted_index.RANS | 113 |
| abstract_inverted_index.eddy | 90 |
| abstract_inverted_index.from | 111, 184 |
| abstract_inverted_index.grid | 86 |
| abstract_inverted_index.high | 6, 31, 101, 181, 213 |
| abstract_inverted_index.meet | 1 |
| abstract_inverted_index.path | 15, 40, 78, 109, 137, 211 |
| abstract_inverted_index.ship | 35, 73, 104, 206 |
| abstract_inverted_index.this | 24 |
| abstract_inverted_index.were | 129 |
| abstract_inverted_index.wind | 53, 162 |
| abstract_inverted_index.with | 180, 212 |
| abstract_inverted_index.0.82, | 171 |
| abstract_inverted_index.0.91, | 169 |
| abstract_inverted_index.0.95, | 168 |
| abstract_inverted_index.Along | 133 |
| abstract_inverted_index.Then, | 98 |
| abstract_inverted_index.along | 37, 106, 208 |
| abstract_inverted_index.field | 11 |
| abstract_inverted_index.fluid | 44 |
| abstract_inverted_index.glide | 14, 39, 77, 108, 136, 210 |
| abstract_inverted_index.ideal | 135 |
| abstract_inverted_index.lidar | 54 |
| abstract_inverted_index.model | 63 |
| abstract_inverted_index.paper | 25 |
| abstract_inverted_index.speed | 177 |
| abstract_inverted_index.under | 115 |
| abstract_inverted_index.using | 83, 99, 174 |
| abstract_inverted_index.(CFD), | 46 |
| abstract_inverted_index.(DWL). | 55 |
| abstract_inverted_index.(RANS) | 95 |
| abstract_inverted_index.(UAVs) | 22 |
| abstract_inverted_index.aerial | 20 |
| abstract_inverted_index.behind | 141 |
| abstract_inverted_index.design | 60 |
| abstract_inverted_index.during | 17 |
| abstract_inverted_index.inflow | 117, 176 |
| abstract_inverted_index.input, | 194 |
| abstract_inverted_index.method | 29 |
| abstract_inverted_index.models | 128, 198 |
| abstract_inverted_index.neural | 49, 125, 154 |
| abstract_inverted_index.region | 79 |
| abstract_inverted_index.sample | 121 |
| abstract_inverted_index.steady | 112 |
| abstract_inverted_index.stern, | 143 |
| abstract_inverted_index.taking | 57 |
| abstract_inverted_index.within | 12, 75, 138 |
| abstract_inverted_index.Doppler | 52 |
| abstract_inverted_index.achieve | 200 |
| abstract_inverted_index.airflow | 10 |
| abstract_inverted_index.airwake | 36, 74, 105, 207 |
| abstract_inverted_index.between | 147 |
| abstract_inverted_index.carried | 81 |
| abstract_inverted_index.carrier | 62 |
| abstract_inverted_index.models. | 97 |
| abstract_inverted_index.network | 126, 155 |
| abstract_inverted_index.object, | 67 |
| abstract_inverted_index.results | 150 |
| abstract_inverted_index.samples | 166 |
| abstract_inverted_index.spatial | 102 |
| abstract_inverted_index.testing | 165 |
| abstract_inverted_index.trained | 130 |
| abstract_inverted_index.Finally, | 173 |
| abstract_inverted_index.Firstly, | 56 |
| abstract_inverted_index.accurate | 201 |
| abstract_inverted_index.aircraft | 61 |
| abstract_inverted_index.corridor | 16 |
| abstract_inverted_index.dataset, | 122 |
| abstract_inverted_index.detached | 89 |
| abstract_inverted_index.dynamics | 45 |
| abstract_inverted_index.exceeded | 167 |
| abstract_inverted_index.network, | 50 |
| abstract_inverted_index.obtained | 110, 188 |
| abstract_inverted_index.proposes | 26 |
| abstract_inverted_index.research | 66 |
| abstract_inverted_index.temporal | 182 |
| abstract_inverted_index.vehicles | 21 |
| abstract_inverted_index.vertical | 161 |
| abstract_inverted_index.(DES)/the | 92 |
| abstract_inverted_index.different | 116 |
| abstract_inverted_index.direction | 179, 187 |
| abstract_inverted_index.headwind, | 158 |
| abstract_inverted_index.landings, | 23 |
| abstract_inverted_index.numerical | 69 |
| abstract_inverted_index.predicted | 149 |
| abstract_inverted_index.shipborne | 191 |
| abstract_inverted_index.conceptual | 59 |
| abstract_inverted_index.conditions | 118 |
| abstract_inverted_index.crosswind, | 159 |
| abstract_inverted_index.optimized. | 132 |
| abstract_inverted_index.prediction | 28, 127, 197, 202 |
| abstract_inverted_index.resolution | 33, 103, 183, 215 |
| abstract_inverted_index.simulation | 91 |
| abstract_inverted_index.turbulence | 96 |
| abstract_inverted_index.correlation | 145 |
| abstract_inverted_index.integrating | 42 |
| abstract_inverted_index.simulations | 70 |
| abstract_inverted_index.Poly-Hexcore | 85 |
| abstract_inverted_index.coefficients | 146 |
| abstract_inverted_index.computations | 114 |
| abstract_inverted_index.requirements | 3 |
| abstract_inverted_index.carrier-based | 18 |
| abstract_inverted_index.computational | 43 |
| abstract_inverted_index.respectively. | 172 |
| abstract_inverted_index.spatiotemporal | 7, 32, 214 |
| abstract_inverted_index.Navier–Stokes | 94 |
| abstract_inverted_index.backpropagation | 47 |
| abstract_inverted_index.Reynolds-averaged | 93 |
| abstract_inverted_index.aircraft/unmanned | 19 |
| abstract_inverted_index.three-dimensional | 8 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.18199393 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |