Rate of Model Collapse in Recursive Training Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2412.17646
Given the ease of creating synthetic data from machine learning models, new models can be potentially trained on synthetic data generated by previous models. This recursive training process raises concerns about the long-term impact on model quality. As models are recursively trained on generated data from previous rounds, their ability to capture the nuances of the original human-generated data may degrade. This is often referred to as \emph{model collapse}. In this work, we ask how fast model collapse occurs for some well-studied distribution families under maximum likelihood (ML or near ML) estimation during recursive training. Surprisingly, even for fundamental distributions such as discrete and Gaussian distributions, the exact rate of model collapse is unknown. In this work, we theoretically characterize the rate of collapse in these fundamental settings and complement it with experimental evaluations. Our results show that for discrete distributions, the time to forget a word is approximately linearly dependent on the number of times it occurred in the original corpus, and for Gaussian models, the standard deviation reduces to zero roughly at $n$ iterations, where $n$ is the number of samples at each iteration. Both of these findings imply that model forgetting, at least in these simple distributions under near ML estimation with many samples, takes a long time.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2412.17646
- https://arxiv.org/pdf/2412.17646
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405768339
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405768339Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2412.17646Digital Object Identifier
- Title
-
Rate of Model Collapse in Recursive TrainingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-23Full publication date if available
- Authors
-
Ananda Theertha Suresh, Andrew Thangaraj, Aditya Nanda Kishore KhandavallyList of authors in order
- Landing page
-
https://arxiv.org/abs/2412.17646Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2412.17646Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2412.17646Direct OA link when available
- Concepts
-
Training (meteorology), Computer science, Geography, MeteorologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405768339 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2412.17646 |
| ids.doi | https://doi.org/10.48550/arxiv.2412.17646 |
| ids.openalex | https://openalex.org/W4405768339 |
| fwci | |
| type | preprint |
| title | Rate of Model Collapse in Recursive Training |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12978 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.1315000057220459 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3304 |
| topics[0].subfield.display_name | Education |
| topics[0].display_name | Innovative Teaching Methodologies in Social Sciences |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2777211547 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6562560796737671 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17141490 |
| concepts[0].display_name | Training (meteorology) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.4943277835845947 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C205649164 |
| concepts[2].level | 0 |
| concepts[2].score | 0.09433251619338989 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[2].display_name | Geography |
| concepts[3].id | https://openalex.org/C153294291 |
| concepts[3].level | 1 |
| concepts[3].score | 0.06989166140556335 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[3].display_name | Meteorology |
| keywords[0].id | https://openalex.org/keywords/training |
| keywords[0].score | 0.6562560796737671 |
| keywords[0].display_name | Training (meteorology) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.4943277835845947 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/geography |
| keywords[2].score | 0.09433251619338989 |
| keywords[2].display_name | Geography |
| keywords[3].id | https://openalex.org/keywords/meteorology |
| keywords[3].score | 0.06989166140556335 |
| keywords[3].display_name | Meteorology |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2412.17646 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2412.17646 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2412.17646 |
| locations[1].id | doi:10.48550/arxiv.2412.17646 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2412.17646 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103890688 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ananda Theertha Suresh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Suresh, Ananda Theertha |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5069723364 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6337-9562 |
| authorships[1].author.display_name | Andrew Thangaraj |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Thangaraj, Andrew |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5115638344 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Aditya Nanda Kishore Khandavally |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Khandavally, Aditya Nanda Kishore |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2412.17646 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Rate of Model Collapse in Recursive Training |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12978 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.1315000057220459 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3304 |
| primary_topic.subfield.display_name | Education |
| primary_topic.display_name | Innovative Teaching Methodologies in Social Sciences |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W230091440, https://openalex.org/W2390279801, https://openalex.org/W2233261550, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2810751659 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2412.17646 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2412.17646 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2412.17646 |
| primary_location.id | pmh:oai:arXiv.org:2412.17646 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2412.17646 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2412.17646 |
| publication_date | 2024-12-23 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 145, 208 |
| abstract_inverted_index.As | 37 |
| abstract_inverted_index.In | 69, 114 |
| abstract_inverted_index.ML | 202 |
| abstract_inverted_index.as | 66, 101 |
| abstract_inverted_index.at | 173, 183, 194 |
| abstract_inverted_index.be | 14 |
| abstract_inverted_index.by | 21 |
| abstract_inverted_index.in | 124, 158, 196 |
| abstract_inverted_index.is | 62, 112, 147, 178 |
| abstract_inverted_index.it | 130, 156 |
| abstract_inverted_index.of | 3, 54, 109, 122, 154, 181, 187 |
| abstract_inverted_index.on | 17, 34, 42, 151 |
| abstract_inverted_index.or | 88 |
| abstract_inverted_index.to | 50, 65, 143, 170 |
| abstract_inverted_index.we | 72, 117 |
| abstract_inverted_index.$n$ | 174, 177 |
| abstract_inverted_index.(ML | 87 |
| abstract_inverted_index.ML) | 90 |
| abstract_inverted_index.Our | 134 |
| abstract_inverted_index.and | 103, 128, 162 |
| abstract_inverted_index.are | 39 |
| abstract_inverted_index.ask | 73 |
| abstract_inverted_index.can | 13 |
| abstract_inverted_index.for | 79, 97, 138, 163 |
| abstract_inverted_index.how | 74 |
| abstract_inverted_index.may | 59 |
| abstract_inverted_index.new | 11 |
| abstract_inverted_index.the | 1, 31, 52, 55, 106, 120, 141, 152, 159, 166, 179 |
| abstract_inverted_index.Both | 186 |
| abstract_inverted_index.This | 24, 61 |
| abstract_inverted_index.data | 6, 19, 44, 58 |
| abstract_inverted_index.each | 184 |
| abstract_inverted_index.ease | 2 |
| abstract_inverted_index.even | 96 |
| abstract_inverted_index.fast | 75 |
| abstract_inverted_index.from | 7, 45 |
| abstract_inverted_index.long | 209 |
| abstract_inverted_index.many | 205 |
| abstract_inverted_index.near | 89, 201 |
| abstract_inverted_index.rate | 108, 121 |
| abstract_inverted_index.show | 136 |
| abstract_inverted_index.some | 80 |
| abstract_inverted_index.such | 100 |
| abstract_inverted_index.that | 137, 191 |
| abstract_inverted_index.this | 70, 115 |
| abstract_inverted_index.time | 142 |
| abstract_inverted_index.with | 131, 204 |
| abstract_inverted_index.word | 146 |
| abstract_inverted_index.zero | 171 |
| abstract_inverted_index.Given | 0 |
| abstract_inverted_index.about | 30 |
| abstract_inverted_index.exact | 107 |
| abstract_inverted_index.imply | 190 |
| abstract_inverted_index.least | 195 |
| abstract_inverted_index.model | 35, 76, 110, 192 |
| abstract_inverted_index.often | 63 |
| abstract_inverted_index.takes | 207 |
| abstract_inverted_index.their | 48 |
| abstract_inverted_index.these | 125, 188, 197 |
| abstract_inverted_index.time. | 210 |
| abstract_inverted_index.times | 155 |
| abstract_inverted_index.under | 84, 200 |
| abstract_inverted_index.where | 176 |
| abstract_inverted_index.work, | 71, 116 |
| abstract_inverted_index.during | 92 |
| abstract_inverted_index.forget | 144 |
| abstract_inverted_index.impact | 33 |
| abstract_inverted_index.models | 12, 38 |
| abstract_inverted_index.number | 153, 180 |
| abstract_inverted_index.occurs | 78 |
| abstract_inverted_index.raises | 28 |
| abstract_inverted_index.simple | 198 |
| abstract_inverted_index.ability | 49 |
| abstract_inverted_index.capture | 51 |
| abstract_inverted_index.corpus, | 161 |
| abstract_inverted_index.machine | 8 |
| abstract_inverted_index.maximum | 85 |
| abstract_inverted_index.models, | 10, 165 |
| abstract_inverted_index.models. | 23 |
| abstract_inverted_index.nuances | 53 |
| abstract_inverted_index.process | 27 |
| abstract_inverted_index.reduces | 169 |
| abstract_inverted_index.results | 135 |
| abstract_inverted_index.roughly | 172 |
| abstract_inverted_index.rounds, | 47 |
| abstract_inverted_index.samples | 182 |
| abstract_inverted_index.trained | 16, 41 |
| abstract_inverted_index.Gaussian | 104, 164 |
| abstract_inverted_index.collapse | 77, 111, 123 |
| abstract_inverted_index.concerns | 29 |
| abstract_inverted_index.creating | 4 |
| abstract_inverted_index.degrade. | 60 |
| abstract_inverted_index.discrete | 102, 139 |
| abstract_inverted_index.families | 83 |
| abstract_inverted_index.findings | 189 |
| abstract_inverted_index.learning | 9 |
| abstract_inverted_index.linearly | 149 |
| abstract_inverted_index.occurred | 157 |
| abstract_inverted_index.original | 56, 160 |
| abstract_inverted_index.previous | 22, 46 |
| abstract_inverted_index.quality. | 36 |
| abstract_inverted_index.referred | 64 |
| abstract_inverted_index.samples, | 206 |
| abstract_inverted_index.settings | 127 |
| abstract_inverted_index.standard | 167 |
| abstract_inverted_index.training | 26 |
| abstract_inverted_index.unknown. | 113 |
| abstract_inverted_index.dependent | 150 |
| abstract_inverted_index.deviation | 168 |
| abstract_inverted_index.generated | 20, 43 |
| abstract_inverted_index.long-term | 32 |
| abstract_inverted_index.recursive | 25, 93 |
| abstract_inverted_index.synthetic | 5, 18 |
| abstract_inverted_index.training. | 94 |
| abstract_inverted_index.collapse}. | 68 |
| abstract_inverted_index.complement | 129 |
| abstract_inverted_index.estimation | 91, 203 |
| abstract_inverted_index.iteration. | 185 |
| abstract_inverted_index.likelihood | 86 |
| abstract_inverted_index.\emph{model | 67 |
| abstract_inverted_index.forgetting, | 193 |
| abstract_inverted_index.fundamental | 98, 126 |
| abstract_inverted_index.iterations, | 175 |
| abstract_inverted_index.potentially | 15 |
| abstract_inverted_index.recursively | 40 |
| abstract_inverted_index.characterize | 119 |
| abstract_inverted_index.distribution | 82 |
| abstract_inverted_index.evaluations. | 133 |
| abstract_inverted_index.experimental | 132 |
| abstract_inverted_index.well-studied | 81 |
| abstract_inverted_index.Surprisingly, | 95 |
| abstract_inverted_index.approximately | 148 |
| abstract_inverted_index.distributions | 99, 199 |
| abstract_inverted_index.theoretically | 118 |
| abstract_inverted_index.distributions, | 105, 140 |
| abstract_inverted_index.human-generated | 57 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |