Raw data for "Unnatural evolutionary processes of SARS-CoV-2 variants and possibility of deliberate natural selection" Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.5281/zenodo.8254894
Over the past three years, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has repeatedly caused pandemics, generating various mutated variants ranging from Alpha to Omicron. In this study, we aimed to clarify the evolutionary processes leading to the formation of SARS-CoV-2 Omicron variants, focusing on Omicron variants with many amino acid mutations in the spike protein among SARS-CoV-2 isolates. To determine the order of mutations leading to the formation of the SARS-CoV-2 Omicron variants, we compared the sequences of 129 Omicron BA.1-related, 141 BA.1.1-related, and 122 BA.2-related isolates, and attempted to clarify the evolutionary processes of SARS-CoV-2 Omicron variants, including the order of mutations leading to their formation and the occurrence of homologous recombination. As a result, we concluded that the formation of a part of Omicron isolates BA.1, BA.1.1, and BA.2 was not the product of genome evolution, as is commonly observed in nature, such as the accumulation of mutations and homologous recombinations. Furthermore, the study of 35 recombinant isolates of Omicron variants BA.1 and BA.2 confirmed that Omicron variants were already present in 2020. The analysis showed that Omicron variants were formed by an entirely new mechanism that cannot be explained by previous biology, and knowing how the SARS-CoV-2 variants were formed prompts a reconsideration of the SARS-CoV-2 pandemic
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.5281/zenodo.8254894
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393646035
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393646035Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5281/zenodo.8254894Digital Object Identifier
- Title
-
Raw data for "Unnatural evolutionary processes of SARS-CoV-2 variants and possibility of deliberate natural selection"Work title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-08-15Full publication date if available
- Authors
-
Atsushi Tanaka, Takayuki MiyazawaList of authors in order
- Landing page
-
https://doi.org/10.5281/zenodo.8254894Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5281/zenodo.8254894Direct OA link when available
- Concepts
-
Natural selection, Selection (genetic algorithm), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Biology, Raw data, Coronavirus disease 2019 (COVID-19), Natural (archaeology), Evolutionary biology, Computer science, Artificial intelligence, Statistics, Mathematics, Medicine, Infectious disease (medical specialty), Paleontology, Pathology, DiseaseTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393646035 |
|---|---|
| doi | https://doi.org/10.5281/zenodo.8254894 |
| ids.doi | https://doi.org/10.5281/zenodo.8254894 |
| ids.openalex | https://openalex.org/W4393646035 |
| fwci | |
| type | dataset |
| title | Raw data for "Unnatural evolutionary processes of SARS-CoV-2 variants and possibility of deliberate natural selection" |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10410 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.6841999888420105 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2611 |
| topics[0].subfield.display_name | Modeling and Simulation |
| topics[0].display_name | COVID-19 epidemiological studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C75268714 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7840378284454346 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q43478 |
| concepts[0].display_name | Natural selection |
| concepts[1].id | https://openalex.org/C81917197 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7300422191619873 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[1].display_name | Selection (genetic algorithm) |
| concepts[2].id | https://openalex.org/C3007834351 |
| concepts[2].level | 5 |
| concepts[2].score | 0.49085813760757446 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q82069695 |
| concepts[2].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| concepts[3].id | https://openalex.org/C86803240 |
| concepts[3].level | 0 |
| concepts[3].score | 0.48592057824134827 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[3].display_name | Biology |
| concepts[4].id | https://openalex.org/C132964779 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4507378339767456 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2110223 |
| concepts[4].display_name | Raw data |
| concepts[5].id | https://openalex.org/C3008058167 |
| concepts[5].level | 4 |
| concepts[5].score | 0.44404488801956177 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q84263196 |
| concepts[5].display_name | Coronavirus disease 2019 (COVID-19) |
| concepts[6].id | https://openalex.org/C2776608160 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43415015935897827 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4785462 |
| concepts[6].display_name | Natural (archaeology) |
| concepts[7].id | https://openalex.org/C78458016 |
| concepts[7].level | 1 |
| concepts[7].score | 0.425650954246521 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q840400 |
| concepts[7].display_name | Evolutionary biology |
| concepts[8].id | https://openalex.org/C41008148 |
| concepts[8].level | 0 |
| concepts[8].score | 0.23227325081825256 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[8].display_name | Computer science |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.1684376299381256 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.11830127239227295 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.11587768793106079 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C71924100 |
| concepts[12].level | 0 |
| concepts[12].score | 0.06990444660186768 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[12].display_name | Medicine |
| concepts[13].id | https://openalex.org/C524204448 |
| concepts[13].level | 3 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q788926 |
| concepts[13].display_name | Infectious disease (medical specialty) |
| concepts[14].id | https://openalex.org/C151730666 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[14].display_name | Paleontology |
| concepts[15].id | https://openalex.org/C142724271 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[15].display_name | Pathology |
| concepts[16].id | https://openalex.org/C2779134260 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q12136 |
| concepts[16].display_name | Disease |
| keywords[0].id | https://openalex.org/keywords/natural-selection |
| keywords[0].score | 0.7840378284454346 |
| keywords[0].display_name | Natural selection |
| keywords[1].id | https://openalex.org/keywords/selection |
| keywords[1].score | 0.7300422191619873 |
| keywords[1].display_name | Selection (genetic algorithm) |
| keywords[2].id | https://openalex.org/keywords/severe-acute-respiratory-syndrome-coronavirus-2 |
| keywords[2].score | 0.49085813760757446 |
| keywords[2].display_name | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) |
| keywords[3].id | https://openalex.org/keywords/biology |
| keywords[3].score | 0.48592057824134827 |
| keywords[3].display_name | Biology |
| keywords[4].id | https://openalex.org/keywords/raw-data |
| keywords[4].score | 0.4507378339767456 |
| keywords[4].display_name | Raw data |
| keywords[5].id | https://openalex.org/keywords/coronavirus-disease-2019 |
| keywords[5].score | 0.44404488801956177 |
| keywords[5].display_name | Coronavirus disease 2019 (COVID-19) |
| keywords[6].id | https://openalex.org/keywords/natural |
| keywords[6].score | 0.43415015935897827 |
| keywords[6].display_name | Natural (archaeology) |
| keywords[7].id | https://openalex.org/keywords/evolutionary-biology |
| keywords[7].score | 0.425650954246521 |
| keywords[7].display_name | Evolutionary biology |
| keywords[8].id | https://openalex.org/keywords/computer-science |
| keywords[8].score | 0.23227325081825256 |
| keywords[8].display_name | Computer science |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.1684376299381256 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.11830127239227295 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.11587768793106079 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/medicine |
| keywords[12].score | 0.06990444660186768 |
| keywords[12].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.5281/zenodo.8254894 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400562 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| locations[0].source.host_organization | https://openalex.org/I67311998 |
| locations[0].source.host_organization_name | European Organization for Nuclear Research |
| locations[0].source.host_organization_lineage | https://openalex.org/I67311998 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.5281/zenodo.8254894 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5013862834 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1424-807X |
| authorships[0].author.display_name | Atsushi Tanaka |
| authorships[0].countries | JP |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I90237989 |
| authorships[0].affiliations[0].raw_affiliation_string | Osaka Medical and Pharmaceutical University |
| authorships[0].institutions[0].id | https://openalex.org/I90237989 |
| authorships[0].institutions[0].ror | https://ror.org/029yaft79 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I90237989 |
| authorships[0].institutions[0].country_code | JP |
| authorships[0].institutions[0].display_name | Osaka University of Pharmaceutical Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Atsushi Tanaka |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Osaka Medical and Pharmaceutical University |
| authorships[1].author.id | https://openalex.org/A5101919809 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-1938-9661 |
| authorships[1].author.display_name | Takayuki Miyazawa |
| authorships[1].countries | JP |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I22299242 |
| authorships[1].affiliations[0].raw_affiliation_string | Kyoto University |
| authorships[1].institutions[0].id | https://openalex.org/I22299242 |
| authorships[1].institutions[0].ror | https://ror.org/02kpeqv85 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I22299242 |
| authorships[1].institutions[0].country_code | JP |
| authorships[1].institutions[0].display_name | Kyoto University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Takayuki Miyazawa |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Kyoto University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5281/zenodo.8254894 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Raw data for "Unnatural evolutionary processes of SARS-CoV-2 variants and possibility of deliberate natural selection" |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10410 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.6841999888420105 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2611 |
| primary_topic.subfield.display_name | Modeling and Simulation |
| primary_topic.display_name | COVID-19 epidemiological studies |
| related_works | https://openalex.org/W4205762803, https://openalex.org/W3012838233, https://openalex.org/W4252510819, https://openalex.org/W2093976704, https://openalex.org/W2535856026, https://openalex.org/W2888434210, https://openalex.org/W2989909607, https://openalex.org/W2018053864, https://openalex.org/W93658046, https://openalex.org/W2114004506 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5281/zenodo.8254894 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400562 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| best_oa_location.source.host_organization | https://openalex.org/I67311998 |
| best_oa_location.source.host_organization_name | European Organization for Nuclear Research |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.5281/zenodo.8254894 |
| primary_location.id | doi:10.5281/zenodo.8254894 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400562 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Zenodo (CERN European Organization for Nuclear Research) |
| primary_location.source.host_organization | https://openalex.org/I67311998 |
| primary_location.source.host_organization_name | European Organization for Nuclear Research |
| primary_location.source.host_organization_lineage | https://openalex.org/I67311998 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.5281/zenodo.8254894 |
| publication_date | 2023-08-15 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.2 | 10 |
| abstract_inverted_index.a | 115, 123, 205 |
| abstract_inverted_index.35 | 158 |
| abstract_inverted_index.As | 114 |
| abstract_inverted_index.In | 25 |
| abstract_inverted_index.To | 59 |
| abstract_inverted_index.an | 185 |
| abstract_inverted_index.as | 139, 146 |
| abstract_inverted_index.be | 191 |
| abstract_inverted_index.by | 184, 193 |
| abstract_inverted_index.in | 52, 143, 174 |
| abstract_inverted_index.is | 140 |
| abstract_inverted_index.of | 39, 63, 69, 78, 95, 102, 111, 122, 125, 136, 149, 157, 161, 207 |
| abstract_inverted_index.on | 44 |
| abstract_inverted_index.to | 23, 30, 36, 66, 90, 105 |
| abstract_inverted_index.we | 28, 74, 117 |
| abstract_inverted_index.122 | 85 |
| abstract_inverted_index.129 | 79 |
| abstract_inverted_index.141 | 82 |
| abstract_inverted_index.The | 176 |
| abstract_inverted_index.and | 84, 88, 108, 130, 151, 165, 196 |
| abstract_inverted_index.has | 12 |
| abstract_inverted_index.how | 198 |
| abstract_inverted_index.new | 187 |
| abstract_inverted_index.not | 133 |
| abstract_inverted_index.the | 1, 32, 37, 53, 61, 67, 70, 76, 92, 100, 109, 120, 134, 147, 155, 199, 208 |
| abstract_inverted_index.was | 132 |
| abstract_inverted_index.BA.1 | 164 |
| abstract_inverted_index.BA.2 | 131, 166 |
| abstract_inverted_index.Over | 0 |
| abstract_inverted_index.acid | 50 |
| abstract_inverted_index.from | 21 |
| abstract_inverted_index.many | 48 |
| abstract_inverted_index.part | 124 |
| abstract_inverted_index.past | 2 |
| abstract_inverted_index.such | 145 |
| abstract_inverted_index.that | 119, 168, 179, 189 |
| abstract_inverted_index.this | 26 |
| abstract_inverted_index.were | 171, 182, 202 |
| abstract_inverted_index.with | 47 |
| abstract_inverted_index.2020. | 175 |
| abstract_inverted_index.Alpha | 22 |
| abstract_inverted_index.BA.1, | 128 |
| abstract_inverted_index.acute | 6 |
| abstract_inverted_index.aimed | 29 |
| abstract_inverted_index.amino | 49 |
| abstract_inverted_index.among | 56 |
| abstract_inverted_index.order | 62, 101 |
| abstract_inverted_index.spike | 54 |
| abstract_inverted_index.study | 156 |
| abstract_inverted_index.their | 106 |
| abstract_inverted_index.three | 3 |
| abstract_inverted_index.cannot | 190 |
| abstract_inverted_index.caused | 14 |
| abstract_inverted_index.formed | 183, 203 |
| abstract_inverted_index.genome | 137 |
| abstract_inverted_index.severe | 5 |
| abstract_inverted_index.showed | 178 |
| abstract_inverted_index.study, | 27 |
| abstract_inverted_index.years, | 4 |
| abstract_inverted_index.BA.1.1, | 129 |
| abstract_inverted_index.Omicron | 41, 45, 72, 80, 97, 126, 162, 169, 180 |
| abstract_inverted_index.already | 172 |
| abstract_inverted_index.clarify | 31, 91 |
| abstract_inverted_index.knowing | 197 |
| abstract_inverted_index.leading | 35, 65, 104 |
| abstract_inverted_index.mutated | 18 |
| abstract_inverted_index.nature, | 144 |
| abstract_inverted_index.present | 173 |
| abstract_inverted_index.product | 135 |
| abstract_inverted_index.prompts | 204 |
| abstract_inverted_index.protein | 55 |
| abstract_inverted_index.ranging | 20 |
| abstract_inverted_index.result, | 116 |
| abstract_inverted_index.various | 17 |
| abstract_inverted_index.Omicron. | 24 |
| abstract_inverted_index.analysis | 177 |
| abstract_inverted_index.biology, | 195 |
| abstract_inverted_index.commonly | 141 |
| abstract_inverted_index.compared | 75 |
| abstract_inverted_index.entirely | 186 |
| abstract_inverted_index.focusing | 43 |
| abstract_inverted_index.isolates | 127, 160 |
| abstract_inverted_index.observed | 142 |
| abstract_inverted_index.pandemic | 210 |
| abstract_inverted_index.previous | 194 |
| abstract_inverted_index.syndrome | 8 |
| abstract_inverted_index.variants | 19, 46, 163, 170, 181, 201 |
| abstract_inverted_index.attempted | 89 |
| abstract_inverted_index.concluded | 118 |
| abstract_inverted_index.confirmed | 167 |
| abstract_inverted_index.determine | 60 |
| abstract_inverted_index.explained | 192 |
| abstract_inverted_index.formation | 38, 68, 107, 121 |
| abstract_inverted_index.including | 99 |
| abstract_inverted_index.isolates, | 87 |
| abstract_inverted_index.isolates. | 58 |
| abstract_inverted_index.mechanism | 188 |
| abstract_inverted_index.mutations | 51, 64, 103, 150 |
| abstract_inverted_index.processes | 34, 94 |
| abstract_inverted_index.sequences | 77 |
| abstract_inverted_index.variants, | 42, 73, 98 |
| abstract_inverted_index.SARS-CoV-2 | 40, 57, 71, 96, 200, 209 |
| abstract_inverted_index.evolution, | 138 |
| abstract_inverted_index.generating | 16 |
| abstract_inverted_index.homologous | 112, 152 |
| abstract_inverted_index.occurrence | 110 |
| abstract_inverted_index.pandemics, | 15 |
| abstract_inverted_index.repeatedly | 13 |
| abstract_inverted_index.coronavirus | 9 |
| abstract_inverted_index.recombinant | 159 |
| abstract_inverted_index.respiratory | 7 |
| abstract_inverted_index.(SARS-CoV-2) | 11 |
| abstract_inverted_index.BA.2-related | 86 |
| abstract_inverted_index.Furthermore, | 154 |
| abstract_inverted_index.accumulation | 148 |
| abstract_inverted_index.evolutionary | 33, 93 |
| abstract_inverted_index.BA.1-related, | 81 |
| abstract_inverted_index.recombination. | 113 |
| abstract_inverted_index.BA.1.1-related, | 83 |
| abstract_inverted_index.recombinations. | 153 |
| abstract_inverted_index.reconsideration | 206 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |