RCSAN residual enhanced channel spatial attention network for stock price forecasting Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1038/s41598-025-06885-y
This study proposes a stock price prediction model based on the Residual-enhanced Channel-Spatial Attention Network (R-CSAN), which integrates channel-spatial adaptive attention mechanisms with residual connections to effectively capture the multidimensional complex patterns in financial time series. The R-CSAN adopts an encoder-decoder architecture, where the encoder extracts feature correlations from historical data through multiple layers of channel-spatial attention modules, and the decoder incorporates a masking mechanism to prevent future information leakage and introduces a cross-attention mechanism to model inter-market correlations. Experiments conducted on four cross-market stock datasets, including Amazon, Maotai, Ping An, and Vanke, demonstrate that R-CSAN significantly outperforms not only traditional baseline models such as ARIMA, LSTM, and CNN-LSTM, but also recent Transformer-based approaches like Informer, Autoformer, and iTransformer on metrics including RMSE, MAE, MAPE, [Formula: see text], and return on investment. The model reduces RMSE by 17.3-49.3% compared to traditional methods and 6.2-11.6% compared to Transformer variants, with the highest [Formula: see text] reaching 93.17% and an increase in return on investment to 482.64%. Ablation experiments confirm the critical contributions of each component, with the temporal module removal causing an average increase of 38.6% in RMSE and channel-spatial attention removal resulting in a 21.3% increase. Moreover, the model provides an interpretative analysis of features and temporal dimensions through attention weight visualization, offering insights into both indicator importance and critical time periods for prediction. In practical applications, R-CSAN's outputs can be integrated into quantitative trading strategies including breakout trading, moving average crossover signals, and portfolio allocation optimization, providing a new paradigm for robust prediction in highly volatile markets.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1038/s41598-025-06885-y
- https://www.nature.com/articles/s41598-025-06885-y.pdf
- OA Status
- gold
- Cited By
- 8
- References
- 49
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411847541
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411847541Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1038/s41598-025-06885-yDigital Object Identifier
- Title
-
RCSAN residual enhanced channel spatial attention network for stock price forecastingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-01Full publication date if available
- Authors
-
Wenjie Sun, Ziyang Liu, C. Z. Yuan, Xiang Zhou, Yuting Pei, Wei CuiList of authors in order
- Landing page
-
https://doi.org/10.1038/s41598-025-06885-yPublisher landing page
- PDF URL
-
https://www.nature.com/articles/s41598-025-06885-y.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.nature.com/articles/s41598-025-06885-y.pdfDirect OA link when available
- Concepts
-
Residual, Stock (firearms), Stock price, Computer science, Econometrics, Economics, Geography, Algorithm, Biology, Archaeology, Paleontology, Series (stratigraphy)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 8Per-year citation counts (last 5 years)
- References (count)
-
49Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411847541 |
|---|---|
| doi | https://doi.org/10.1038/s41598-025-06885-y |
| ids.doi | https://doi.org/10.1038/s41598-025-06885-y |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40596213 |
| ids.openalex | https://openalex.org/W4411847541 |
| fwci | 44.05456885 |
| type | article |
| title | RCSAN residual enhanced channel spatial attention network for stock price forecasting |
| biblio.issue | 1 |
| biblio.volume | 15 |
| biblio.last_page | 21800 |
| biblio.first_page | 21800 |
| topics[0].id | https://openalex.org/T11326 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Stock Market Forecasting Methods |
| topics[1].id | https://openalex.org/T14319 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9922999739646912 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Currency Recognition and Detection |
| topics[2].id | https://openalex.org/T12205 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.984499990940094 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Time Series Analysis and Forecasting |
| is_xpac | False |
| apc_list.value | 1890 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2190 |
| apc_paid.value | 1890 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2190 |
| concepts[0].id | https://openalex.org/C155512373 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7967250943183899 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[0].display_name | Residual |
| concepts[1].id | https://openalex.org/C204036174 |
| concepts[1].level | 2 |
| concepts[1].score | 0.57152259349823 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q909380 |
| concepts[1].display_name | Stock (firearms) |
| concepts[2].id | https://openalex.org/C2988984586 |
| concepts[2].level | 3 |
| concepts[2].score | 0.48602229356765747 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1020013 |
| concepts[2].display_name | Stock price |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.45900484919548035 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C149782125 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3334546983242035 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[4].display_name | Econometrics |
| concepts[5].id | https://openalex.org/C162324750 |
| concepts[5].level | 0 |
| concepts[5].score | 0.16553407907485962 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[5].display_name | Economics |
| concepts[6].id | https://openalex.org/C205649164 |
| concepts[6].level | 0 |
| concepts[6].score | 0.09059613943099976 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[6].display_name | Geography |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.08846178650856018 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C86803240 |
| concepts[8].level | 0 |
| concepts[8].score | 0.0824996829032898 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[8].display_name | Biology |
| concepts[9].id | https://openalex.org/C166957645 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[9].display_name | Archaeology |
| concepts[10].id | https://openalex.org/C151730666 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[10].display_name | Paleontology |
| concepts[11].id | https://openalex.org/C143724316 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[11].display_name | Series (stratigraphy) |
| keywords[0].id | https://openalex.org/keywords/residual |
| keywords[0].score | 0.7967250943183899 |
| keywords[0].display_name | Residual |
| keywords[1].id | https://openalex.org/keywords/stock |
| keywords[1].score | 0.57152259349823 |
| keywords[1].display_name | Stock (firearms) |
| keywords[2].id | https://openalex.org/keywords/stock-price |
| keywords[2].score | 0.48602229356765747 |
| keywords[2].display_name | Stock price |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.45900484919548035 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/econometrics |
| keywords[4].score | 0.3334546983242035 |
| keywords[4].display_name | Econometrics |
| keywords[5].id | https://openalex.org/keywords/economics |
| keywords[5].score | 0.16553407907485962 |
| keywords[5].display_name | Economics |
| keywords[6].id | https://openalex.org/keywords/geography |
| keywords[6].score | 0.09059613943099976 |
| keywords[6].display_name | Geography |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.08846178650856018 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/biology |
| keywords[8].score | 0.0824996829032898 |
| keywords[8].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1038/s41598-025-06885-y |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S196734849 |
| locations[0].source.issn | 2045-2322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2045-2322 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Scientific Reports |
| locations[0].source.host_organization | https://openalex.org/P4310319908 |
| locations[0].source.host_organization_name | Nature Portfolio |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.nature.com/articles/s41598-025-06885-y.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Scientific Reports |
| locations[0].landing_page_url | https://doi.org/10.1038/s41598-025-06885-y |
| locations[1].id | pmid:40596213 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Scientific reports |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40596213 |
| locations[2].id | pmh:oai:doaj.org/article:74ea0bc0450a44589767c666c1f42592 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Scientific Reports, Vol 15, Iss 1, Pp 1-20 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/74ea0bc0450a44589767c666c1f42592 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12217125 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sci Rep |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12217125 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5071514312 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3100-2346 |
| authorships[0].author.display_name | Wenjie Sun |
| authorships[0].countries | KR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I55188197 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Global Management, Seokyeong University, Seoul, 027028, South Korea. |
| authorships[0].institutions[0].id | https://openalex.org/I55188197 |
| authorships[0].institutions[0].ror | https://ror.org/04x0k0m51 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I55188197 |
| authorships[0].institutions[0].country_code | KR |
| authorships[0].institutions[0].display_name | Seokyeong University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | WenJie Sun |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Global Management, Seokyeong University, Seoul, 027028, South Korea. |
| authorships[1].author.id | https://openalex.org/A5012653502 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5419-1250 |
| authorships[1].author.display_name | Ziyang Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I118574674 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Computer Science and Technology, Jiangsu Normal University, Xuzhou, 221116, China. |
| authorships[1].institutions[0].id | https://openalex.org/I118574674 |
| authorships[1].institutions[0].ror | https://ror.org/051hvcm98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I118574674 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Jiangsu Normal University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ziyang Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Computer Science and Technology, Jiangsu Normal University, Xuzhou, 221116, China. |
| authorships[2].author.id | https://openalex.org/A5005449631 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1652-6686 |
| authorships[2].author.display_name | C. Z. Yuan |
| authorships[2].countries | RU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I173089394 |
| authorships[2].affiliations[0].raw_affiliation_string | Faculty of Control Systems and Robotics, National Research University for Information Technology, Mechanics and Optics (ITMO), Saint Petersburg, 197101, Russia. |
| authorships[2].institutions[0].id | https://openalex.org/I173089394 |
| authorships[2].institutions[0].ror | https://ror.org/04txgxn49 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I173089394 |
| authorships[2].institutions[0].country_code | RU |
| authorships[2].institutions[0].display_name | ITMO University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | ChunHong Yuan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Faculty of Control Systems and Robotics, National Research University for Information Technology, Mechanics and Optics (ITMO), Saint Petersburg, 197101, Russia. |
| authorships[3].author.id | https://openalex.org/A5112576496 |
| authorships[3].author.orcid | https://orcid.org/0009-0009-2843-4605 |
| authorships[3].author.display_name | Xiang Zhou |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I118574674 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Computer Science and Technology, Jiangsu Normal University, Xuzhou, 221116, China. |
| authorships[3].institutions[0].id | https://openalex.org/I118574674 |
| authorships[3].institutions[0].ror | https://ror.org/051hvcm98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I118574674 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Jiangsu Normal University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xiang Zhou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Computer Science and Technology, Jiangsu Normal University, Xuzhou, 221116, China. |
| authorships[4].author.id | https://openalex.org/A5076452175 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yuting Pei |
| authorships[4].countries | RU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I21203515 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Social and Philosophical Sciences and Mass Communications, Kazan (Volga Region) Federal University, Kazan, 420008, Russia. |
| authorships[4].institutions[0].id | https://openalex.org/I21203515 |
| authorships[4].institutions[0].ror | https://ror.org/05256ym39 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I21203515 |
| authorships[4].institutions[0].country_code | RU |
| authorships[4].institutions[0].display_name | Kazan Federal University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | YuTing Pei |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Institute of Social and Philosophical Sciences and Mass Communications, Kazan (Volga Region) Federal University, Kazan, 420008, Russia. |
| authorships[5].author.id | https://openalex.org/A5101908815 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1537-9848 |
| authorships[5].author.display_name | Wei Cui |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I106079672 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Management Engineering and Business, Hebei University of Engineering, Handan, 056000, China. [email protected]. |
| authorships[5].institutions[0].id | https://openalex.org/I106079672 |
| authorships[5].institutions[0].ror | https://ror.org/036h65h05 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I106079672 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Hebei University of Engineering |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Cui Wei |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Management Engineering and Business, Hebei University of Engineering, Handan, 056000, China. [email protected]. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.nature.com/articles/s41598-025-06885-y.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | RCSAN residual enhanced channel spatial attention network for stock price forecasting |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11326 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Stock Market Forecasting Methods |
| related_works | https://openalex.org/W247222457, https://openalex.org/W3124131549, https://openalex.org/W2152348935, https://openalex.org/W2887069341, https://openalex.org/W2554106722, https://openalex.org/W1797892342, https://openalex.org/W4240248738, https://openalex.org/W3008476150, https://openalex.org/W2093710055, https://openalex.org/W2344827208 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 8 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1038/s41598-025-06885-y |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S196734849 |
| best_oa_location.source.issn | 2045-2322 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2045-2322 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Scientific Reports |
| best_oa_location.source.host_organization | https://openalex.org/P4310319908 |
| best_oa_location.source.host_organization_name | Nature Portfolio |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.nature.com/articles/s41598-025-06885-y.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Scientific Reports |
| best_oa_location.landing_page_url | https://doi.org/10.1038/s41598-025-06885-y |
| primary_location.id | doi:10.1038/s41598-025-06885-y |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S196734849 |
| primary_location.source.issn | 2045-2322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2045-2322 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Scientific Reports |
| primary_location.source.host_organization | https://openalex.org/P4310319908 |
| primary_location.source.host_organization_name | Nature Portfolio |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319908, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Nature Portfolio, Springer Nature |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.nature.com/articles/s41598-025-06885-y.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Scientific Reports |
| primary_location.landing_page_url | https://doi.org/10.1038/s41598-025-06885-y |
| publication_date | 2025-07-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3172545452, https://openalex.org/W4399992320, https://openalex.org/W4405758639, https://openalex.org/W4391825403, https://openalex.org/W4387364214, https://openalex.org/W4235154503, https://openalex.org/W3125564657, https://openalex.org/W4408308130, https://openalex.org/W2865675487, https://openalex.org/W2922995703, https://openalex.org/W3110420963, https://openalex.org/W4411137516, https://openalex.org/W4285402398, https://openalex.org/W3111507638, https://openalex.org/W6600424091, https://openalex.org/W2997421965, https://openalex.org/W2964350391, https://openalex.org/W6767278793, https://openalex.org/W3119916308, https://openalex.org/W3042071913, https://openalex.org/W4402424644, https://openalex.org/W4390858905, https://openalex.org/W4391825390, https://openalex.org/W3217626109, https://openalex.org/W3162977831, https://openalex.org/W4400394387, https://openalex.org/W4401324765, https://openalex.org/W4387121164, https://openalex.org/W2064675550, https://openalex.org/W2624385633, https://openalex.org/W2734986640, https://openalex.org/W2112796928, https://openalex.org/W2800569739, https://openalex.org/W6739901393, https://openalex.org/W2613328025, https://openalex.org/W2954731415, https://openalex.org/W6600002382, https://openalex.org/W3022643593, https://openalex.org/W3109365969, https://openalex.org/W2586702902, https://openalex.org/W3022746105, https://openalex.org/W4205539948, https://openalex.org/W2154700902, https://openalex.org/W2547686578, https://openalex.org/W2912290085, https://openalex.org/W2774513877, https://openalex.org/W2025053102, https://openalex.org/W4407031014, https://openalex.org/W3132782787 |
| referenced_works_count | 49 |
| abstract_inverted_index.a | 3, 62, 72, 193, 248 |
| abstract_inverted_index.In | 224 |
| abstract_inverted_index.an | 39, 157, 180, 200 |
| abstract_inverted_index.as | 104 |
| abstract_inverted_index.be | 230 |
| abstract_inverted_index.by | 136 |
| abstract_inverted_index.in | 32, 159, 185, 192, 254 |
| abstract_inverted_index.of | 54, 171, 183, 203 |
| abstract_inverted_index.on | 9, 81, 119, 130, 161 |
| abstract_inverted_index.to | 25, 65, 75, 139, 145, 163 |
| abstract_inverted_index.An, | 90 |
| abstract_inverted_index.The | 36, 132 |
| abstract_inverted_index.and | 58, 70, 91, 107, 117, 128, 142, 156, 187, 205, 218, 243 |
| abstract_inverted_index.but | 109 |
| abstract_inverted_index.can | 229 |
| abstract_inverted_index.for | 222, 251 |
| abstract_inverted_index.new | 249 |
| abstract_inverted_index.not | 98 |
| abstract_inverted_index.see | 126, 152 |
| abstract_inverted_index.the | 10, 28, 43, 59, 149, 168, 175, 197 |
| abstract_inverted_index.MAE, | 123 |
| abstract_inverted_index.Ping | 89 |
| abstract_inverted_index.RMSE | 135, 186 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.also | 110 |
| abstract_inverted_index.both | 215 |
| abstract_inverted_index.data | 50 |
| abstract_inverted_index.each | 172 |
| abstract_inverted_index.four | 82 |
| abstract_inverted_index.from | 48 |
| abstract_inverted_index.into | 214, 232 |
| abstract_inverted_index.like | 114 |
| abstract_inverted_index.only | 99 |
| abstract_inverted_index.such | 103 |
| abstract_inverted_index.that | 94 |
| abstract_inverted_index.time | 34, 220 |
| abstract_inverted_index.with | 22, 148, 174 |
| abstract_inverted_index.21.3% | 194 |
| abstract_inverted_index.38.6% | 184 |
| abstract_inverted_index.LSTM, | 106 |
| abstract_inverted_index.MAPE, | 124 |
| abstract_inverted_index.RMSE, | 122 |
| abstract_inverted_index.based | 8 |
| abstract_inverted_index.model | 7, 76, 133, 198 |
| abstract_inverted_index.price | 5 |
| abstract_inverted_index.stock | 4, 84 |
| abstract_inverted_index.study | 1 |
| abstract_inverted_index.text] | 153 |
| abstract_inverted_index.where | 42 |
| abstract_inverted_index.which | 16 |
| abstract_inverted_index.93.17% | 155 |
| abstract_inverted_index.ARIMA, | 105 |
| abstract_inverted_index.R-CSAN | 37, 95 |
| abstract_inverted_index.Vanke, | 92 |
| abstract_inverted_index.adopts | 38 |
| abstract_inverted_index.future | 67 |
| abstract_inverted_index.highly | 255 |
| abstract_inverted_index.layers | 53 |
| abstract_inverted_index.models | 102 |
| abstract_inverted_index.module | 177 |
| abstract_inverted_index.moving | 239 |
| abstract_inverted_index.recent | 111 |
| abstract_inverted_index.return | 129, 160 |
| abstract_inverted_index.robust | 252 |
| abstract_inverted_index.text], | 127 |
| abstract_inverted_index.weight | 210 |
| abstract_inverted_index.Amazon, | 87 |
| abstract_inverted_index.Maotai, | 88 |
| abstract_inverted_index.Network | 14 |
| abstract_inverted_index.average | 181, 240 |
| abstract_inverted_index.capture | 27 |
| abstract_inverted_index.causing | 179 |
| abstract_inverted_index.complex | 30 |
| abstract_inverted_index.confirm | 167 |
| abstract_inverted_index.decoder | 60 |
| abstract_inverted_index.encoder | 44 |
| abstract_inverted_index.feature | 46 |
| abstract_inverted_index.highest | 150 |
| abstract_inverted_index.leakage | 69 |
| abstract_inverted_index.masking | 63 |
| abstract_inverted_index.methods | 141 |
| abstract_inverted_index.metrics | 120 |
| abstract_inverted_index.outputs | 228 |
| abstract_inverted_index.periods | 221 |
| abstract_inverted_index.prevent | 66 |
| abstract_inverted_index.reduces | 134 |
| abstract_inverted_index.removal | 178, 190 |
| abstract_inverted_index.series. | 35 |
| abstract_inverted_index.through | 51, 208 |
| abstract_inverted_index.trading | 234 |
| abstract_inverted_index.482.64%. | 164 |
| abstract_inverted_index.Ablation | 165 |
| abstract_inverted_index.R-CSAN's | 227 |
| abstract_inverted_index.adaptive | 19 |
| abstract_inverted_index.analysis | 202 |
| abstract_inverted_index.baseline | 101 |
| abstract_inverted_index.breakout | 237 |
| abstract_inverted_index.compared | 138, 144 |
| abstract_inverted_index.critical | 169, 219 |
| abstract_inverted_index.extracts | 45 |
| abstract_inverted_index.features | 204 |
| abstract_inverted_index.increase | 158, 182 |
| abstract_inverted_index.insights | 213 |
| abstract_inverted_index.markets. | 257 |
| abstract_inverted_index.modules, | 57 |
| abstract_inverted_index.multiple | 52 |
| abstract_inverted_index.offering | 212 |
| abstract_inverted_index.paradigm | 250 |
| abstract_inverted_index.patterns | 31 |
| abstract_inverted_index.proposes | 2 |
| abstract_inverted_index.provides | 199 |
| abstract_inverted_index.reaching | 154 |
| abstract_inverted_index.residual | 23 |
| abstract_inverted_index.signals, | 242 |
| abstract_inverted_index.temporal | 176, 206 |
| abstract_inverted_index.trading, | 238 |
| abstract_inverted_index.volatile | 256 |
| abstract_inverted_index.(R-CSAN), | 15 |
| abstract_inverted_index.6.2-11.6% | 143 |
| abstract_inverted_index.Attention | 13 |
| abstract_inverted_index.CNN-LSTM, | 108 |
| abstract_inverted_index.Informer, | 115 |
| abstract_inverted_index.Moreover, | 196 |
| abstract_inverted_index.[Formula: | 125, 151 |
| abstract_inverted_index.attention | 20, 56, 189, 209 |
| abstract_inverted_index.conducted | 80 |
| abstract_inverted_index.crossover | 241 |
| abstract_inverted_index.datasets, | 85 |
| abstract_inverted_index.financial | 33 |
| abstract_inverted_index.including | 86, 121, 236 |
| abstract_inverted_index.increase. | 195 |
| abstract_inverted_index.indicator | 216 |
| abstract_inverted_index.mechanism | 64, 74 |
| abstract_inverted_index.portfolio | 244 |
| abstract_inverted_index.practical | 225 |
| abstract_inverted_index.providing | 247 |
| abstract_inverted_index.resulting | 191 |
| abstract_inverted_index.variants, | 147 |
| abstract_inverted_index.17.3-49.3% | 137 |
| abstract_inverted_index.allocation | 245 |
| abstract_inverted_index.approaches | 113 |
| abstract_inverted_index.component, | 173 |
| abstract_inverted_index.dimensions | 207 |
| abstract_inverted_index.historical | 49 |
| abstract_inverted_index.importance | 217 |
| abstract_inverted_index.integrated | 231 |
| abstract_inverted_index.integrates | 17 |
| abstract_inverted_index.introduces | 71 |
| abstract_inverted_index.investment | 162 |
| abstract_inverted_index.mechanisms | 21 |
| abstract_inverted_index.prediction | 6, 253 |
| abstract_inverted_index.strategies | 235 |
| abstract_inverted_index.Autoformer, | 116 |
| abstract_inverted_index.Experiments | 79 |
| abstract_inverted_index.Transformer | 146 |
| abstract_inverted_index.connections | 24 |
| abstract_inverted_index.demonstrate | 93 |
| abstract_inverted_index.effectively | 26 |
| abstract_inverted_index.experiments | 166 |
| abstract_inverted_index.information | 68 |
| abstract_inverted_index.investment. | 131 |
| abstract_inverted_index.outperforms | 97 |
| abstract_inverted_index.prediction. | 223 |
| abstract_inverted_index.traditional | 100, 140 |
| abstract_inverted_index.correlations | 47 |
| abstract_inverted_index.cross-market | 83 |
| abstract_inverted_index.iTransformer | 118 |
| abstract_inverted_index.incorporates | 61 |
| abstract_inverted_index.inter-market | 77 |
| abstract_inverted_index.quantitative | 233 |
| abstract_inverted_index.applications, | 226 |
| abstract_inverted_index.architecture, | 41 |
| abstract_inverted_index.contributions | 170 |
| abstract_inverted_index.correlations. | 78 |
| abstract_inverted_index.optimization, | 246 |
| abstract_inverted_index.significantly | 96 |
| abstract_inverted_index.interpretative | 201 |
| abstract_inverted_index.visualization, | 211 |
| abstract_inverted_index.Channel-Spatial | 12 |
| abstract_inverted_index.channel-spatial | 18, 55, 188 |
| abstract_inverted_index.cross-attention | 73 |
| abstract_inverted_index.encoder-decoder | 40 |
| abstract_inverted_index.multidimensional | 29 |
| abstract_inverted_index.Residual-enhanced | 11 |
| abstract_inverted_index.Transformer-based | 112 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.99591347 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |