Re-examining Distillation For Continual Object Detection Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2204.01407
Training models continually to detect and classify objects, from new classes and new domains, remains an open problem. In this work, we conduct a thorough analysis of why and how object detection models forget catastrophically. We focus on distillation-based approaches in two-stage networks; the most-common strategy employed in contemporary continual object detection work.Distillation aims to transfer the knowledge of a model trained on previous tasks -- the teacher -- to a new model -- the student -- while it learns the new task. We show that this works well for the region proposal network, but that wrong, yet overly confident teacher predictions prevent student models from effective learning of the classification head. Our analysis provides a foundation that allows us to propose improvements for existing techniques by detecting incorrect teacher predictions, based on current ground-truth labels, and by employing an adaptive Huber loss as opposed to the mean squared error for the distillation loss in the classification heads. We evidence that our strategy works not only in a class incremental setting, but also in domain incremental settings, which constitute a realistic context, likely to be the setting of representative real-world problems.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2204.01407
- https://arxiv.org/pdf/2204.01407
- OA Status
- green
- Cited By
- 5
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226436870
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226436870Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2204.01407Digital Object Identifier
- Title
-
Re-examining Distillation For Continual Object DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-04-04Full publication date if available
- Authors
-
Eli Verwimp, Kuo Yang, Sarah Parisot, Hong Lanqing, Steven McDonagh, Eduardo Pérez-Pellitero, Matthias De Lange, Tinne TuytelaarsList of authors in order
- Landing page
-
https://arxiv.org/abs/2204.01407Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2204.01407Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2204.01407Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Object (grammar), Machine learning, Context (archaeology), Focus (optics), Distillation, Class (philosophy), Object detection, Domain (mathematical analysis), Task (project management), Pattern recognition (psychology), Engineering, Mathematics, Optics, Paleontology, Organic chemistry, Chemistry, Systems engineering, Physics, Mathematical analysis, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 5Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226436870 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2204.01407 |
| ids.doi | https://doi.org/10.48550/arxiv.2204.01407 |
| ids.openalex | https://openalex.org/W4226436870 |
| fwci | |
| type | preprint |
| title | Re-examining Distillation For Continual Object Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9990000128746033 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9990000128746033 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7703561782836914 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6628386974334717 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C2781238097 |
| concepts[2].level | 2 |
| concepts[2].score | 0.650641143321991 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[2].display_name | Object (grammar) |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6471956968307495 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C2779343474 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6415475606918335 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3109175 |
| concepts[4].display_name | Context (archaeology) |
| concepts[5].id | https://openalex.org/C192209626 |
| concepts[5].level | 2 |
| concepts[5].score | 0.6378695964813232 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[5].display_name | Focus (optics) |
| concepts[6].id | https://openalex.org/C204030448 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6141506433486938 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q101017 |
| concepts[6].display_name | Distillation |
| concepts[7].id | https://openalex.org/C2777212361 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5371931195259094 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[7].display_name | Class (philosophy) |
| concepts[8].id | https://openalex.org/C2776151529 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5364295840263367 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[8].display_name | Object detection |
| concepts[9].id | https://openalex.org/C36503486 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5334539413452148 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[9].display_name | Domain (mathematical analysis) |
| concepts[10].id | https://openalex.org/C2780451532 |
| concepts[10].level | 2 |
| concepts[10].score | 0.5140746831893921 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[10].display_name | Task (project management) |
| concepts[11].id | https://openalex.org/C153180895 |
| concepts[11].level | 2 |
| concepts[11].score | 0.19487816095352173 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[11].display_name | Pattern recognition (psychology) |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.10410156846046448 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0870298445224762 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C120665830 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[14].display_name | Optics |
| concepts[15].id | https://openalex.org/C151730666 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[15].display_name | Paleontology |
| concepts[16].id | https://openalex.org/C178790620 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[16].display_name | Organic chemistry |
| concepts[17].id | https://openalex.org/C185592680 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[17].display_name | Chemistry |
| concepts[18].id | https://openalex.org/C201995342 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[18].display_name | Systems engineering |
| concepts[19].id | https://openalex.org/C121332964 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[19].display_name | Physics |
| concepts[20].id | https://openalex.org/C134306372 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[20].display_name | Mathematical analysis |
| concepts[21].id | https://openalex.org/C86803240 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[21].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7703561782836914 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6628386974334717 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/object |
| keywords[2].score | 0.650641143321991 |
| keywords[2].display_name | Object (grammar) |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.6471956968307495 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/context |
| keywords[4].score | 0.6415475606918335 |
| keywords[4].display_name | Context (archaeology) |
| keywords[5].id | https://openalex.org/keywords/focus |
| keywords[5].score | 0.6378695964813232 |
| keywords[5].display_name | Focus (optics) |
| keywords[6].id | https://openalex.org/keywords/distillation |
| keywords[6].score | 0.6141506433486938 |
| keywords[6].display_name | Distillation |
| keywords[7].id | https://openalex.org/keywords/class |
| keywords[7].score | 0.5371931195259094 |
| keywords[7].display_name | Class (philosophy) |
| keywords[8].id | https://openalex.org/keywords/object-detection |
| keywords[8].score | 0.5364295840263367 |
| keywords[8].display_name | Object detection |
| keywords[9].id | https://openalex.org/keywords/domain |
| keywords[9].score | 0.5334539413452148 |
| keywords[9].display_name | Domain (mathematical analysis) |
| keywords[10].id | https://openalex.org/keywords/task |
| keywords[10].score | 0.5140746831893921 |
| keywords[10].display_name | Task (project management) |
| keywords[11].id | https://openalex.org/keywords/pattern-recognition |
| keywords[11].score | 0.19487816095352173 |
| keywords[11].display_name | Pattern recognition (psychology) |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.10410156846046448 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.0870298445224762 |
| keywords[13].display_name | Mathematics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2204.01407 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2204.01407 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2204.01407 |
| locations[1].id | doi:10.48550/arxiv.2204.01407 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2204.01407 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5090879932 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5469-3103 |
| authorships[0].author.display_name | Eli Verwimp |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Verwimp, Eli |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101754880 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7113-1951 |
| authorships[1].author.display_name | Kuo Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yang, Kuo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5020523405 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Sarah Parisot |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Parisot, Sarah |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5001524361 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Hong Lanqing |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lanqing, Hong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5052824649 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7025-5197 |
| authorships[4].author.display_name | Steven McDonagh |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | McDonagh, Steven |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5013682396 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9096-4740 |
| authorships[5].author.display_name | Eduardo Pérez-Pellitero |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Pérez-Pellitero, Eduardo |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5028525006 |
| authorships[6].author.orcid | |
| authorships[6].author.display_name | Matthias De Lange |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | De Lange, Matthias |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5074816094 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-3307-9723 |
| authorships[7].author.display_name | Tinne Tuytelaars |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Tuytelaars, Tinne |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2204.01407 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Re-examining Distillation For Continual Object Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W2012531322, https://openalex.org/W2785900585, https://openalex.org/W2353730437, https://openalex.org/W3026162553, https://openalex.org/W2490303674, https://openalex.org/W2609066826, https://openalex.org/W2810752900, https://openalex.org/W2365677836, https://openalex.org/W4292830139, https://openalex.org/W4319309705 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 5 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2204.01407 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2204.01407 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2204.01407 |
| primary_location.id | pmh:oai:arXiv.org:2204.01407 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2204.01407 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2204.01407 |
| publication_date | 2022-04-04 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 23, 59, 70, 115, 167, 179 |
| abstract_inverted_index.-- | 65, 68, 73, 76 |
| abstract_inverted_index.In | 18 |
| abstract_inverted_index.We | 35, 83, 158 |
| abstract_inverted_index.an | 15, 139 |
| abstract_inverted_index.as | 143 |
| abstract_inverted_index.be | 184 |
| abstract_inverted_index.by | 126, 137 |
| abstract_inverted_index.in | 40, 47, 154, 166, 173 |
| abstract_inverted_index.it | 78 |
| abstract_inverted_index.of | 26, 58, 108, 187 |
| abstract_inverted_index.on | 37, 62, 132 |
| abstract_inverted_index.to | 3, 54, 69, 120, 145, 183 |
| abstract_inverted_index.us | 119 |
| abstract_inverted_index.we | 21 |
| abstract_inverted_index.Our | 112 |
| abstract_inverted_index.and | 5, 11, 28, 136 |
| abstract_inverted_index.but | 94, 171 |
| abstract_inverted_index.for | 89, 123, 150 |
| abstract_inverted_index.how | 29 |
| abstract_inverted_index.new | 9, 12, 71, 81 |
| abstract_inverted_index.not | 164 |
| abstract_inverted_index.our | 161 |
| abstract_inverted_index.the | 43, 56, 66, 74, 80, 90, 109, 146, 151, 155, 185 |
| abstract_inverted_index.why | 27 |
| abstract_inverted_index.yet | 97 |
| abstract_inverted_index.aims | 53 |
| abstract_inverted_index.also | 172 |
| abstract_inverted_index.from | 8, 105 |
| abstract_inverted_index.loss | 142, 153 |
| abstract_inverted_index.mean | 147 |
| abstract_inverted_index.only | 165 |
| abstract_inverted_index.open | 16 |
| abstract_inverted_index.show | 84 |
| abstract_inverted_index.that | 85, 95, 117, 160 |
| abstract_inverted_index.this | 19, 86 |
| abstract_inverted_index.well | 88 |
| abstract_inverted_index.Huber | 141 |
| abstract_inverted_index.based | 131 |
| abstract_inverted_index.class | 168 |
| abstract_inverted_index.error | 149 |
| abstract_inverted_index.focus | 36 |
| abstract_inverted_index.head. | 111 |
| abstract_inverted_index.model | 60, 72 |
| abstract_inverted_index.task. | 82 |
| abstract_inverted_index.tasks | 64 |
| abstract_inverted_index.which | 177 |
| abstract_inverted_index.while | 77 |
| abstract_inverted_index.work, | 20 |
| abstract_inverted_index.works | 87, 163 |
| abstract_inverted_index.allows | 118 |
| abstract_inverted_index.detect | 4 |
| abstract_inverted_index.domain | 174 |
| abstract_inverted_index.forget | 33 |
| abstract_inverted_index.heads. | 157 |
| abstract_inverted_index.learns | 79 |
| abstract_inverted_index.likely | 182 |
| abstract_inverted_index.models | 1, 32, 104 |
| abstract_inverted_index.object | 30, 50 |
| abstract_inverted_index.overly | 98 |
| abstract_inverted_index.region | 91 |
| abstract_inverted_index.wrong, | 96 |
| abstract_inverted_index.classes | 10 |
| abstract_inverted_index.conduct | 22 |
| abstract_inverted_index.current | 133 |
| abstract_inverted_index.labels, | 135 |
| abstract_inverted_index.opposed | 144 |
| abstract_inverted_index.prevent | 102 |
| abstract_inverted_index.propose | 121 |
| abstract_inverted_index.remains | 14 |
| abstract_inverted_index.setting | 186 |
| abstract_inverted_index.squared | 148 |
| abstract_inverted_index.student | 75, 103 |
| abstract_inverted_index.teacher | 67, 100, 129 |
| abstract_inverted_index.trained | 61 |
| abstract_inverted_index.Training | 0 |
| abstract_inverted_index.adaptive | 140 |
| abstract_inverted_index.analysis | 25, 113 |
| abstract_inverted_index.classify | 6 |
| abstract_inverted_index.context, | 181 |
| abstract_inverted_index.domains, | 13 |
| abstract_inverted_index.employed | 46 |
| abstract_inverted_index.evidence | 159 |
| abstract_inverted_index.existing | 124 |
| abstract_inverted_index.learning | 107 |
| abstract_inverted_index.network, | 93 |
| abstract_inverted_index.objects, | 7 |
| abstract_inverted_index.previous | 63 |
| abstract_inverted_index.problem. | 17 |
| abstract_inverted_index.proposal | 92 |
| abstract_inverted_index.provides | 114 |
| abstract_inverted_index.setting, | 170 |
| abstract_inverted_index.strategy | 45, 162 |
| abstract_inverted_index.thorough | 24 |
| abstract_inverted_index.transfer | 55 |
| abstract_inverted_index.confident | 99 |
| abstract_inverted_index.continual | 49 |
| abstract_inverted_index.detecting | 127 |
| abstract_inverted_index.detection | 31, 51 |
| abstract_inverted_index.effective | 106 |
| abstract_inverted_index.employing | 138 |
| abstract_inverted_index.incorrect | 128 |
| abstract_inverted_index.knowledge | 57 |
| abstract_inverted_index.networks; | 42 |
| abstract_inverted_index.problems. | 190 |
| abstract_inverted_index.realistic | 180 |
| abstract_inverted_index.settings, | 176 |
| abstract_inverted_index.two-stage | 41 |
| abstract_inverted_index.approaches | 39 |
| abstract_inverted_index.constitute | 178 |
| abstract_inverted_index.foundation | 116 |
| abstract_inverted_index.real-world | 189 |
| abstract_inverted_index.techniques | 125 |
| abstract_inverted_index.continually | 2 |
| abstract_inverted_index.incremental | 169, 175 |
| abstract_inverted_index.most-common | 44 |
| abstract_inverted_index.predictions | 101 |
| abstract_inverted_index.contemporary | 48 |
| abstract_inverted_index.distillation | 152 |
| abstract_inverted_index.ground-truth | 134 |
| abstract_inverted_index.improvements | 122 |
| abstract_inverted_index.predictions, | 130 |
| abstract_inverted_index.classification | 110, 156 |
| abstract_inverted_index.representative | 188 |
| abstract_inverted_index.catastrophically. | 34 |
| abstract_inverted_index.work.Distillation | 52 |
| abstract_inverted_index.distillation-based | 38 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.7900000214576721 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |