Real-Time Detection of Cracks on Concrete Bridge Decks Using Deep Learning in the Frequency Domain Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1016/j.eng.2020.07.026
This paper presents a vision-based crack detection approach for concrete bridge decks using an integrated one-dimensional convolutional neural network (1D-CNN) and long short-term memory (LSTM) method in the image frequency domain. The so-called 1D-CNN-LSTM algorithm is trained using thousands of images of cracked and non-cracked concrete bridge decks. In order to improve the training efficiency, images are first transformed into the frequency domain during a preprocessing phase. The algorithm is then calibrated using the flattened frequency data. LSTM is used to improve the performance of the developed network for long sequence data. The accuracy of the developed model is 99.05%, 98.9%, and 99.25%, respectively, for training, validation, and testing data. An implementation framework is further developed for future application of the trained model for large-scale images. The proposed 1D-CNN-LSTM method exhibits superior performance in comparison with existing deep learning methods in terms of accuracy and computation time. The fast implementation of the 1D-CNN-LSTM algorithm makes it a promising tool for real-time crack detection.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.eng.2020.07.026
- OA Status
- gold
- Cited By
- 130
- References
- 58
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3098048737
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3098048737Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.eng.2020.07.026Digital Object Identifier
- Title
-
Real-Time Detection of Cracks on Concrete Bridge Decks Using Deep Learning in the Frequency DomainWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-11-19Full publication date if available
- Authors
-
Qianyun Zhang, Kaveh Barri, Saeed Babanajad, Amir H. AlaviList of authors in order
- Landing page
-
https://doi.org/10.1016/j.eng.2020.07.026Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.eng.2020.07.026Direct OA link when available
- Concepts
-
Computer science, Convolutional neural network, Preprocessor, Bridge (graph theory), Artificial intelligence, Frequency domain, Deep learning, Time domain, Domain (mathematical analysis), Computation, Data pre-processing, Image (mathematics), Artificial neural network, Pattern recognition (psychology), Algorithm, Computer vision, Medicine, Internal medicine, Mathematics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
130Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 30, 2024: 33, 2023: 34, 2022: 25, 2021: 8Per-year citation counts (last 5 years)
- References (count)
-
58Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3098048737 |
|---|---|
| doi | https://doi.org/10.1016/j.eng.2020.07.026 |
| ids.doi | https://doi.org/10.1016/j.eng.2020.07.026 |
| ids.mag | 3098048737 |
| ids.openalex | https://openalex.org/W3098048737 |
| fwci | 9.88063356 |
| type | article |
| title | Real-Time Detection of Cracks on Concrete Bridge Decks Using Deep Learning in the Frequency Domain |
| biblio.issue | 12 |
| biblio.volume | 7 |
| biblio.last_page | 1796 |
| biblio.first_page | 1786 |
| topics[0].id | https://openalex.org/T11606 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Infrastructure Maintenance and Monitoring |
| topics[1].id | https://openalex.org/T11850 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9919999837875366 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Concrete Corrosion and Durability |
| topics[2].id | https://openalex.org/T10534 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9908999800682068 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Structural Health Monitoring Techniques |
| funders[0].id | https://openalex.org/F4320308115 |
| funders[0].ror | https://ror.org/02j0q7e02 |
| funders[0].display_name | Pennsylvania Department of Transportation |
| funders[1].id | https://openalex.org/F4320310174 |
| funders[1].ror | https://ror.org/01an3r305 |
| funders[1].display_name | University of Pittsburgh |
| is_xpac | False |
| apc_list.value | 1000 |
| apc_list.currency | USD |
| apc_list.value_usd | 1000 |
| apc_paid.value | 1000 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1000 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7710255980491638 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7606761455535889 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C34736171 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7401334047317505 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[2].display_name | Preprocessor |
| concepts[3].id | https://openalex.org/C100776233 |
| concepts[3].level | 2 |
| concepts[3].score | 0.7142071723937988 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2532492 |
| concepts[3].display_name | Bridge (graph theory) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6032735109329224 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C19118579 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5853122472763062 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q786423 |
| concepts[5].display_name | Frequency domain |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5490435361862183 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C103824480 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5400756597518921 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q185889 |
| concepts[7].display_name | Time domain |
| concepts[8].id | https://openalex.org/C36503486 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5343538522720337 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11235244 |
| concepts[8].display_name | Domain (mathematical analysis) |
| concepts[9].id | https://openalex.org/C45374587 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5275188088417053 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[9].display_name | Computation |
| concepts[10].id | https://openalex.org/C10551718 |
| concepts[10].level | 2 |
| concepts[10].score | 0.46105706691741943 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5227332 |
| concepts[10].display_name | Data pre-processing |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4495224356651306 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| concepts[12].id | https://openalex.org/C50644808 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4370267391204834 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[12].display_name | Artificial neural network |
| concepts[13].id | https://openalex.org/C153180895 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4067772924900055 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[13].display_name | Pattern recognition (psychology) |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.293485164642334 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| concepts[15].id | https://openalex.org/C31972630 |
| concepts[15].level | 1 |
| concepts[15].score | 0.26942676305770874 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[15].display_name | Computer vision |
| concepts[16].id | https://openalex.org/C71924100 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[16].display_name | Medicine |
| concepts[17].id | https://openalex.org/C126322002 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[17].display_name | Internal medicine |
| concepts[18].id | https://openalex.org/C33923547 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[18].display_name | Mathematics |
| concepts[19].id | https://openalex.org/C134306372 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[19].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7710255980491638 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.7606761455535889 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/preprocessor |
| keywords[2].score | 0.7401334047317505 |
| keywords[2].display_name | Preprocessor |
| keywords[3].id | https://openalex.org/keywords/bridge |
| keywords[3].score | 0.7142071723937988 |
| keywords[3].display_name | Bridge (graph theory) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6032735109329224 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/frequency-domain |
| keywords[5].score | 0.5853122472763062 |
| keywords[5].display_name | Frequency domain |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.5490435361862183 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/time-domain |
| keywords[7].score | 0.5400756597518921 |
| keywords[7].display_name | Time domain |
| keywords[8].id | https://openalex.org/keywords/domain |
| keywords[8].score | 0.5343538522720337 |
| keywords[8].display_name | Domain (mathematical analysis) |
| keywords[9].id | https://openalex.org/keywords/computation |
| keywords[9].score | 0.5275188088417053 |
| keywords[9].display_name | Computation |
| keywords[10].id | https://openalex.org/keywords/data-pre-processing |
| keywords[10].score | 0.46105706691741943 |
| keywords[10].display_name | Data pre-processing |
| keywords[11].id | https://openalex.org/keywords/image |
| keywords[11].score | 0.4495224356651306 |
| keywords[11].display_name | Image (mathematics) |
| keywords[12].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[12].score | 0.4370267391204834 |
| keywords[12].display_name | Artificial neural network |
| keywords[13].id | https://openalex.org/keywords/pattern-recognition |
| keywords[13].score | 0.4067772924900055 |
| keywords[13].display_name | Pattern recognition (psychology) |
| keywords[14].id | https://openalex.org/keywords/algorithm |
| keywords[14].score | 0.293485164642334 |
| keywords[14].display_name | Algorithm |
| keywords[15].id | https://openalex.org/keywords/computer-vision |
| keywords[15].score | 0.26942676305770874 |
| keywords[15].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.1016/j.eng.2020.07.026 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210192142 |
| locations[0].source.issn | 2095-8099, 2096-0026 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2095-8099 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Engineering |
| locations[0].landing_page_url | https://doi.org/10.1016/j.eng.2020.07.026 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5052563154 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2147-4059 |
| authorships[0].author.display_name | Qianyun Zhang |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I170201317 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA |
| authorships[0].institutions[0].id | https://openalex.org/I170201317 |
| authorships[0].institutions[0].ror | https://ror.org/01an3r305 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I170201317 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Pittsburgh |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qianyun Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA |
| authorships[1].author.id | https://openalex.org/A5058973510 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4279-9730 |
| authorships[1].author.display_name | Kaveh Barri |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I170201317 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA |
| authorships[1].institutions[0].id | https://openalex.org/I170201317 |
| authorships[1].institutions[0].ror | https://ror.org/01an3r305 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I170201317 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Pittsburgh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kaveh Barri |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA |
| authorships[2].author.id | https://openalex.org/A5024535634 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Saeed Babanajad |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I883842289 |
| authorships[2].affiliations[0].raw_affiliation_string | Wiss, Janney, Elstner Associates Inc., Northbrook, IL 60062, USA |
| authorships[2].institutions[0].id | https://openalex.org/I883842289 |
| authorships[2].institutions[0].ror | https://ror.org/05eer5n81 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I883842289 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Wiss Janney Elstner Associates |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Saeed K. Babanajad |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Wiss, Janney, Elstner Associates Inc., Northbrook, IL 60062, USA |
| authorships[3].author.id | https://openalex.org/A5081817597 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-7593-8509 |
| authorships[3].author.display_name | Amir H. Alavi |
| authorships[3].countries | TW, US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I170201317 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I143578492 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan 41354, China |
| authorships[3].institutions[0].id | https://openalex.org/I143578492 |
| authorships[3].institutions[0].ror | https://ror.org/038a1tp19 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I143578492 |
| authorships[3].institutions[0].country_code | TW |
| authorships[3].institutions[0].display_name | Asia University |
| authorships[3].institutions[1].id | https://openalex.org/I170201317 |
| authorships[3].institutions[1].ror | https://ror.org/01an3r305 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I170201317 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | University of Pittsburgh |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Amir H. Alavi |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA, Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan 41354, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.eng.2020.07.026 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Real-Time Detection of Cracks on Concrete Bridge Decks Using Deep Learning in the Frequency Domain |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11606 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Infrastructure Maintenance and Monitoring |
| related_works | https://openalex.org/W2989490741, https://openalex.org/W3092506759, https://openalex.org/W2367545121, https://openalex.org/W4248881655, https://openalex.org/W2482165163, https://openalex.org/W3010890513, https://openalex.org/W120741642, https://openalex.org/W138569904, https://openalex.org/W2390914021, https://openalex.org/W2389417819 |
| cited_by_count | 130 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 30 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 33 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 34 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 25 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 8 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.eng.2020.07.026 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210192142 |
| best_oa_location.source.issn | 2095-8099, 2096-0026 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2095-8099 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.eng.2020.07.026 |
| primary_location.id | doi:10.1016/j.eng.2020.07.026 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210192142 |
| primary_location.source.issn | 2095-8099, 2096-0026 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2095-8099 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Engineering |
| primary_location.landing_page_url | https://doi.org/10.1016/j.eng.2020.07.026 |
| publication_date | 2020-11-19 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2922073063, https://openalex.org/W2919946988, https://openalex.org/W2976474645, https://openalex.org/W2480267542, https://openalex.org/W2076387959, https://openalex.org/W6670128979, https://openalex.org/W1759600866, https://openalex.org/W2154805199, https://openalex.org/W2106238010, https://openalex.org/W2144801789, https://openalex.org/W1993097837, https://openalex.org/W2979549919, https://openalex.org/W2980472264, https://openalex.org/W2169303706, https://openalex.org/W130013534, https://openalex.org/W1596173341, https://openalex.org/W2325975990, https://openalex.org/W6681813608, https://openalex.org/W6684191040, https://openalex.org/W2756789966, https://openalex.org/W2890179326, https://openalex.org/W6757085564, https://openalex.org/W2983280015, https://openalex.org/W2919115771, https://openalex.org/W2990423348, https://openalex.org/W6609025380, https://openalex.org/W2598457882, https://openalex.org/W2810123099, https://openalex.org/W2168893862, https://openalex.org/W4244461127, https://openalex.org/W1523493493, https://openalex.org/W2076063813, https://openalex.org/W2064675550, https://openalex.org/W2121029939, https://openalex.org/W2805707465, https://openalex.org/W2889717020, https://openalex.org/W1689711448, https://openalex.org/W2758361465, https://openalex.org/W2610635404, https://openalex.org/W2770058012, https://openalex.org/W2605443677, https://openalex.org/W1600744878, https://openalex.org/W2904910227, https://openalex.org/W6625448046, https://openalex.org/W2125527601, https://openalex.org/W2100925004, https://openalex.org/W2113945798, https://openalex.org/W2271840356, https://openalex.org/W2145023731, https://openalex.org/W234388709, https://openalex.org/W2498076460, https://openalex.org/W2887124204, https://openalex.org/W571870154, https://openalex.org/W2163605009, https://openalex.org/W4300907038, https://openalex.org/W4229921563, https://openalex.org/W962245595, https://openalex.org/W2904906816 |
| referenced_works_count | 58 |
| abstract_inverted_index.a | 3, 64, 156 |
| abstract_inverted_index.An | 110 |
| abstract_inverted_index.In | 48 |
| abstract_inverted_index.an | 13 |
| abstract_inverted_index.in | 26, 133, 140 |
| abstract_inverted_index.is | 35, 69, 78, 98, 113 |
| abstract_inverted_index.it | 155 |
| abstract_inverted_index.of | 39, 41, 84, 94, 119, 142, 150 |
| abstract_inverted_index.to | 50, 80 |
| abstract_inverted_index.The | 31, 67, 92, 126, 147 |
| abstract_inverted_index.and | 20, 43, 101, 107, 144 |
| abstract_inverted_index.are | 56 |
| abstract_inverted_index.for | 8, 88, 104, 116, 123, 159 |
| abstract_inverted_index.the | 27, 52, 60, 73, 82, 85, 95, 120, 151 |
| abstract_inverted_index.LSTM | 77 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.deep | 137 |
| abstract_inverted_index.fast | 148 |
| abstract_inverted_index.into | 59 |
| abstract_inverted_index.long | 21, 89 |
| abstract_inverted_index.then | 70 |
| abstract_inverted_index.tool | 158 |
| abstract_inverted_index.used | 79 |
| abstract_inverted_index.with | 135 |
| abstract_inverted_index.crack | 5, 161 |
| abstract_inverted_index.data. | 76, 91, 109 |
| abstract_inverted_index.decks | 11 |
| abstract_inverted_index.first | 57 |
| abstract_inverted_index.image | 28 |
| abstract_inverted_index.makes | 154 |
| abstract_inverted_index.model | 97, 122 |
| abstract_inverted_index.order | 49 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.terms | 141 |
| abstract_inverted_index.time. | 146 |
| abstract_inverted_index.using | 12, 37, 72 |
| abstract_inverted_index.(LSTM) | 24 |
| abstract_inverted_index.98.9%, | 100 |
| abstract_inverted_index.bridge | 10, 46 |
| abstract_inverted_index.decks. | 47 |
| abstract_inverted_index.domain | 62 |
| abstract_inverted_index.during | 63 |
| abstract_inverted_index.future | 117 |
| abstract_inverted_index.images | 40, 55 |
| abstract_inverted_index.memory | 23 |
| abstract_inverted_index.method | 25, 129 |
| abstract_inverted_index.neural | 17 |
| abstract_inverted_index.phase. | 66 |
| abstract_inverted_index.99.05%, | 99 |
| abstract_inverted_index.99.25%, | 102 |
| abstract_inverted_index.cracked | 42 |
| abstract_inverted_index.domain. | 30 |
| abstract_inverted_index.further | 114 |
| abstract_inverted_index.images. | 125 |
| abstract_inverted_index.improve | 51, 81 |
| abstract_inverted_index.methods | 139 |
| abstract_inverted_index.network | 18, 87 |
| abstract_inverted_index.testing | 108 |
| abstract_inverted_index.trained | 36, 121 |
| abstract_inverted_index.(1D-CNN) | 19 |
| abstract_inverted_index.accuracy | 93, 143 |
| abstract_inverted_index.approach | 7 |
| abstract_inverted_index.concrete | 9, 45 |
| abstract_inverted_index.exhibits | 130 |
| abstract_inverted_index.existing | 136 |
| abstract_inverted_index.learning | 138 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.proposed | 127 |
| abstract_inverted_index.sequence | 90 |
| abstract_inverted_index.superior | 131 |
| abstract_inverted_index.training | 53 |
| abstract_inverted_index.algorithm | 34, 68, 153 |
| abstract_inverted_index.detection | 6 |
| abstract_inverted_index.developed | 86, 96, 115 |
| abstract_inverted_index.flattened | 74 |
| abstract_inverted_index.framework | 112 |
| abstract_inverted_index.frequency | 29, 61, 75 |
| abstract_inverted_index.promising | 157 |
| abstract_inverted_index.real-time | 160 |
| abstract_inverted_index.so-called | 32 |
| abstract_inverted_index.thousands | 38 |
| abstract_inverted_index.training, | 105 |
| abstract_inverted_index.calibrated | 71 |
| abstract_inverted_index.comparison | 134 |
| abstract_inverted_index.detection. | 162 |
| abstract_inverted_index.integrated | 14 |
| abstract_inverted_index.short-term | 22 |
| abstract_inverted_index.1D-CNN-LSTM | 33, 128, 152 |
| abstract_inverted_index.application | 118 |
| abstract_inverted_index.computation | 145 |
| abstract_inverted_index.efficiency, | 54 |
| abstract_inverted_index.large-scale | 124 |
| abstract_inverted_index.non-cracked | 44 |
| abstract_inverted_index.performance | 83, 132 |
| abstract_inverted_index.transformed | 58 |
| abstract_inverted_index.validation, | 106 |
| abstract_inverted_index.vision-based | 4 |
| abstract_inverted_index.convolutional | 16 |
| abstract_inverted_index.preprocessing | 65 |
| abstract_inverted_index.respectively, | 103 |
| abstract_inverted_index.implementation | 111, 149 |
| abstract_inverted_index.one-dimensional | 15 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5081817597 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I143578492, https://openalex.org/I170201317 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.98943919 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |