Real-Time Multi-Modal Subcomponent-Level Measurements for Trustworthy System Monitoring and Malware Detection Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2501.13081
With increasingly sophisticated cyber-adversaries able to access a wider repertoire of mechanisms to implant malware such as ransomware, CPU/GPU keyloggers, and stealthy kernel rootkits, there is an urgent need for techniques to detect and mitigate such attacks. While state of the art relies on digital and analog side channel measurements assuming trustworthiness of measurements obtained on the main processor, such an approach has limitations since processor-based side channel measurements are potentially untrustworthy. Sophisticated adversaries (especially in late stage cyber attacks when they have breached the computer and network security systems such as firewalls and antivirus and penetrated the computer's OS) can compromise user-space and kernel-space measurements. To address this key limitation of state of the art, we propose a "subcomponent-level" approach to collect side channel measurements so as to enable robust anomaly detection in a modern computer even when the main processor is compromised. Our proposed approach leverages the fact that modern computers are complex systems with multiple interacting subcomponents and measurements from subcomponents can be used to detect anomalies even when the main processor is no longer trustworthy. We develop mechanisms to obtain time series measurements of activity of several subcomponents and methodologies to process and fuse these measurements for anomaly detection. The subcomponents include network interface controller, GPU, CPU Hardware Performance Counters, CPU power, and keyboard. Our main hypothesis is that subcomponent measurements can enable detection of security threats without requiring a trustworthy main processor. By enabling real-time measurements from multiple subcomponents, the goal is to provide a deeper visibility into system operation, thereby yielding a powerful tool to track system operation and detect anomalies.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2501.13081
- https://arxiv.org/pdf/2501.13081
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406780041
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406780041Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2501.13081Digital Object Identifier
- Title
-
Real-Time Multi-Modal Subcomponent-Level Measurements for Trustworthy System Monitoring and Malware DetectionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-22Full publication date if available
- Authors
-
Farshad Khorrami, Ramesh Karri, P. KrishnamurthyList of authors in order
- Landing page
-
https://arxiv.org/abs/2501.13081Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2501.13081Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2501.13081Direct OA link when available
- Concepts
-
Modal, Trustworthiness, Malware, Computer science, Real-time computing, Artificial intelligence, Data mining, Computer security, Econometrics, Mathematics, Chemistry, Polymer chemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406780041 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2501.13081 |
| ids.doi | https://doi.org/10.48550/arxiv.2501.13081 |
| ids.openalex | https://openalex.org/W4406780041 |
| fwci | |
| type | preprint |
| title | Real-Time Multi-Modal Subcomponent-Level Measurements for Trustworthy System Monitoring and Malware Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11241 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9804999828338623 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Advanced Malware Detection Techniques |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9726999998092651 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T10400 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9624000191688538 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Network Security and Intrusion Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C71139939 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6725847721099854 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q910194 |
| concepts[0].display_name | Modal |
| concepts[1].id | https://openalex.org/C153701036 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6564115881919861 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q659974 |
| concepts[1].display_name | Trustworthiness |
| concepts[2].id | https://openalex.org/C541664917 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6235306859016418 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q14001 |
| concepts[2].display_name | Malware |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4806557893753052 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C79403827 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4254644513130188 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3988 |
| concepts[4].display_name | Real-time computing |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.35063785314559937 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.33699917793273926 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C38652104 |
| concepts[7].level | 1 |
| concepts[7].score | 0.32887184619903564 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[7].display_name | Computer security |
| concepts[8].id | https://openalex.org/C149782125 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32165682315826416 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[8].display_name | Econometrics |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.255113422870636 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C185592680 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0666564404964447 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[10].display_name | Chemistry |
| concepts[11].id | https://openalex.org/C188027245 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q750446 |
| concepts[11].display_name | Polymer chemistry |
| keywords[0].id | https://openalex.org/keywords/modal |
| keywords[0].score | 0.6725847721099854 |
| keywords[0].display_name | Modal |
| keywords[1].id | https://openalex.org/keywords/trustworthiness |
| keywords[1].score | 0.6564115881919861 |
| keywords[1].display_name | Trustworthiness |
| keywords[2].id | https://openalex.org/keywords/malware |
| keywords[2].score | 0.6235306859016418 |
| keywords[2].display_name | Malware |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4806557893753052 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/real-time-computing |
| keywords[4].score | 0.4254644513130188 |
| keywords[4].display_name | Real-time computing |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.35063785314559937 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.33699917793273926 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/computer-security |
| keywords[7].score | 0.32887184619903564 |
| keywords[7].display_name | Computer security |
| keywords[8].id | https://openalex.org/keywords/econometrics |
| keywords[8].score | 0.32165682315826416 |
| keywords[8].display_name | Econometrics |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.255113422870636 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/chemistry |
| keywords[10].score | 0.0666564404964447 |
| keywords[10].display_name | Chemistry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2501.13081 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2501.13081 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2501.13081 |
| locations[1].id | doi:10.48550/arxiv.2501.13081 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2501.13081 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5082413942 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8418-004X |
| authorships[0].author.display_name | Farshad Khorrami |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Khorrami, Farshad |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5059648257 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7989-5617 |
| authorships[1].author.display_name | Ramesh Karri |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Karri, Ramesh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5054769060 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8264-7972 |
| authorships[2].author.display_name | P. Krishnamurthy |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Krishnamurthy, Prashanth |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2501.13081 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Real-Time Multi-Modal Subcomponent-Level Measurements for Trustworthy System Monitoring and Malware Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11241 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9804999828338623 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Advanced Malware Detection Techniques |
| related_works | https://openalex.org/W2097492617, https://openalex.org/W2753240997, https://openalex.org/W1764168690, https://openalex.org/W2537959205, https://openalex.org/W2740895074, https://openalex.org/W2772446090, https://openalex.org/W4284893819, https://openalex.org/W3152891574, https://openalex.org/W4316881845, https://openalex.org/W2975527072 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2501.13081 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2501.13081 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2501.13081 |
| primary_location.id | pmh:oai:arXiv.org:2501.13081 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2501.13081 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2501.13081 |
| publication_date | 2025-01-22 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 7, 118, 134, 233, 249, 257 |
| abstract_inverted_index.By | 237 |
| abstract_inverted_index.To | 106 |
| abstract_inverted_index.We | 179 |
| abstract_inverted_index.an | 26, 60 |
| abstract_inverted_index.as | 16, 91, 127 |
| abstract_inverted_index.be | 165 |
| abstract_inverted_index.in | 75, 133 |
| abstract_inverted_index.is | 25, 142, 175, 221, 246 |
| abstract_inverted_index.no | 176 |
| abstract_inverted_index.of | 10, 39, 52, 111, 113, 187, 189, 228 |
| abstract_inverted_index.on | 43, 55 |
| abstract_inverted_index.so | 126 |
| abstract_inverted_index.to | 5, 12, 31, 121, 128, 167, 182, 194, 247, 260 |
| abstract_inverted_index.we | 116 |
| abstract_inverted_index.CPU | 210, 214 |
| abstract_inverted_index.OS) | 99 |
| abstract_inverted_index.Our | 144, 218 |
| abstract_inverted_index.The | 203 |
| abstract_inverted_index.and | 20, 33, 45, 86, 93, 95, 103, 160, 192, 196, 216, 264 |
| abstract_inverted_index.are | 69, 153 |
| abstract_inverted_index.art | 41 |
| abstract_inverted_index.can | 100, 164, 225 |
| abstract_inverted_index.for | 29, 200 |
| abstract_inverted_index.has | 62 |
| abstract_inverted_index.key | 109 |
| abstract_inverted_index.the | 40, 56, 84, 97, 114, 139, 148, 172, 244 |
| abstract_inverted_index.GPU, | 209 |
| abstract_inverted_index.With | 0 |
| abstract_inverted_index.able | 4 |
| abstract_inverted_index.art, | 115 |
| abstract_inverted_index.even | 137, 170 |
| abstract_inverted_index.fact | 149 |
| abstract_inverted_index.from | 162, 241 |
| abstract_inverted_index.fuse | 197 |
| abstract_inverted_index.goal | 245 |
| abstract_inverted_index.have | 82 |
| abstract_inverted_index.into | 252 |
| abstract_inverted_index.late | 76 |
| abstract_inverted_index.main | 57, 140, 173, 219, 235 |
| abstract_inverted_index.need | 28 |
| abstract_inverted_index.side | 47, 66, 123 |
| abstract_inverted_index.such | 15, 35, 59, 90 |
| abstract_inverted_index.that | 150, 222 |
| abstract_inverted_index.they | 81 |
| abstract_inverted_index.this | 108 |
| abstract_inverted_index.time | 184 |
| abstract_inverted_index.tool | 259 |
| abstract_inverted_index.used | 166 |
| abstract_inverted_index.when | 80, 138, 171 |
| abstract_inverted_index.with | 156 |
| abstract_inverted_index.While | 37 |
| abstract_inverted_index.cyber | 78 |
| abstract_inverted_index.since | 64 |
| abstract_inverted_index.stage | 77 |
| abstract_inverted_index.state | 38, 112 |
| abstract_inverted_index.there | 24 |
| abstract_inverted_index.these | 198 |
| abstract_inverted_index.track | 261 |
| abstract_inverted_index.wider | 8 |
| abstract_inverted_index.access | 6 |
| abstract_inverted_index.analog | 46 |
| abstract_inverted_index.deeper | 250 |
| abstract_inverted_index.detect | 32, 168, 265 |
| abstract_inverted_index.enable | 129, 226 |
| abstract_inverted_index.kernel | 22 |
| abstract_inverted_index.longer | 177 |
| abstract_inverted_index.modern | 135, 151 |
| abstract_inverted_index.obtain | 183 |
| abstract_inverted_index.power, | 215 |
| abstract_inverted_index.relies | 42 |
| abstract_inverted_index.robust | 130 |
| abstract_inverted_index.series | 185 |
| abstract_inverted_index.system | 253, 262 |
| abstract_inverted_index.urgent | 27 |
| abstract_inverted_index.CPU/GPU | 18 |
| abstract_inverted_index.address | 107 |
| abstract_inverted_index.anomaly | 131, 201 |
| abstract_inverted_index.attacks | 79 |
| abstract_inverted_index.channel | 48, 67, 124 |
| abstract_inverted_index.collect | 122 |
| abstract_inverted_index.complex | 154 |
| abstract_inverted_index.develop | 180 |
| abstract_inverted_index.digital | 44 |
| abstract_inverted_index.implant | 13 |
| abstract_inverted_index.include | 205 |
| abstract_inverted_index.malware | 14 |
| abstract_inverted_index.network | 87, 206 |
| abstract_inverted_index.process | 195 |
| abstract_inverted_index.propose | 117 |
| abstract_inverted_index.provide | 248 |
| abstract_inverted_index.several | 190 |
| abstract_inverted_index.systems | 89, 155 |
| abstract_inverted_index.thereby | 255 |
| abstract_inverted_index.threats | 230 |
| abstract_inverted_index.without | 231 |
| abstract_inverted_index.Hardware | 211 |
| abstract_inverted_index.activity | 188 |
| abstract_inverted_index.approach | 61, 120, 146 |
| abstract_inverted_index.assuming | 50 |
| abstract_inverted_index.attacks. | 36 |
| abstract_inverted_index.breached | 83 |
| abstract_inverted_index.computer | 85, 136 |
| abstract_inverted_index.enabling | 238 |
| abstract_inverted_index.mitigate | 34 |
| abstract_inverted_index.multiple | 157, 242 |
| abstract_inverted_index.obtained | 54 |
| abstract_inverted_index.powerful | 258 |
| abstract_inverted_index.proposed | 145 |
| abstract_inverted_index.security | 88, 229 |
| abstract_inverted_index.stealthy | 21 |
| abstract_inverted_index.yielding | 256 |
| abstract_inverted_index.Counters, | 213 |
| abstract_inverted_index.anomalies | 169 |
| abstract_inverted_index.antivirus | 94 |
| abstract_inverted_index.computers | 152 |
| abstract_inverted_index.detection | 132, 227 |
| abstract_inverted_index.firewalls | 92 |
| abstract_inverted_index.interface | 207 |
| abstract_inverted_index.keyboard. | 217 |
| abstract_inverted_index.leverages | 147 |
| abstract_inverted_index.operation | 263 |
| abstract_inverted_index.processor | 141, 174 |
| abstract_inverted_index.real-time | 239 |
| abstract_inverted_index.requiring | 232 |
| abstract_inverted_index.rootkits, | 23 |
| abstract_inverted_index.anomalies. | 266 |
| abstract_inverted_index.compromise | 101 |
| abstract_inverted_index.computer's | 98 |
| abstract_inverted_index.detection. | 202 |
| abstract_inverted_index.hypothesis | 220 |
| abstract_inverted_index.limitation | 110 |
| abstract_inverted_index.mechanisms | 11, 181 |
| abstract_inverted_index.operation, | 254 |
| abstract_inverted_index.penetrated | 96 |
| abstract_inverted_index.processor, | 58 |
| abstract_inverted_index.processor. | 236 |
| abstract_inverted_index.repertoire | 9 |
| abstract_inverted_index.techniques | 30 |
| abstract_inverted_index.user-space | 102 |
| abstract_inverted_index.visibility | 251 |
| abstract_inverted_index.(especially | 74 |
| abstract_inverted_index.Performance | 212 |
| abstract_inverted_index.adversaries | 73 |
| abstract_inverted_index.controller, | 208 |
| abstract_inverted_index.interacting | 158 |
| abstract_inverted_index.keyloggers, | 19 |
| abstract_inverted_index.limitations | 63 |
| abstract_inverted_index.potentially | 70 |
| abstract_inverted_index.ransomware, | 17 |
| abstract_inverted_index.trustworthy | 234 |
| abstract_inverted_index.compromised. | 143 |
| abstract_inverted_index.increasingly | 1 |
| abstract_inverted_index.kernel-space | 104 |
| abstract_inverted_index.measurements | 49, 53, 68, 125, 161, 186, 199, 224, 240 |
| abstract_inverted_index.subcomponent | 223 |
| abstract_inverted_index.trustworthy. | 178 |
| abstract_inverted_index.Sophisticated | 72 |
| abstract_inverted_index.measurements. | 105 |
| abstract_inverted_index.methodologies | 193 |
| abstract_inverted_index.sophisticated | 2 |
| abstract_inverted_index.subcomponents | 159, 163, 191, 204 |
| abstract_inverted_index.subcomponents, | 243 |
| abstract_inverted_index.untrustworthy. | 71 |
| abstract_inverted_index.processor-based | 65 |
| abstract_inverted_index.trustworthiness | 51 |
| abstract_inverted_index.cyber-adversaries | 3 |
| abstract_inverted_index."subcomponent-level" | 119 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |