Real‐world evidence in the cloud: Tutorial on developing an end‐to‐end data and analytics pipeline using Amazon Web Services resources Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1111/cts.70078
In the rapidly evolving landscape of healthcare and drug development, the ability to efficiently collect, process, and analyze large volumes of real‐world data (RWD) is critical for advancing drug development. This article provides a blueprint for establishing an end‐to‐end data and analytics pipeline in a cloud‐based environment. The pipeline presented here includes four major components, including data ingestion, transformation, visualization, and analytics, each supported by a suite of Amazon Web Services (AWS) tools. The pipeline is exemplified through the CURE ID platform, a collaborative tool designed to capture and analyze real‐world, off‐label treatment administrations. By using services such as AWS Lambda, Amazon Relational Database Service (RDS), Amazon QuickSight, and Amazon SageMaker, the pipeline facilitates the ingestion of diverse data sources, the transformation of raw data into structured formats, the creation of interactive dashboards for data visualization, and the application of advanced machine learning models for data analytics. The described architecture not only supports the needs of the CURE ID platform, but also offers a scalable and adaptable framework that can be applied across various domains to enhance data‐driven decision making beyond drug repurposing.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1111/cts.70078
- OA Status
- gold
- Cited By
- 1
- References
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4405376419
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4405376419Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1111/cts.70078Digital Object Identifier
- Title
-
Real‐world evidence in the cloud: Tutorial on developing an end‐to‐end data and analytics pipeline using Amazon Web Services resourcesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-12-01Full publication date if available
- Authors
-
Wes Anderson, Roopal Bhatnagar, Keith Scollick, Marco Schito, Ramona Walls, Jagdeep T. PodichettyList of authors in order
- Landing page
-
https://doi.org/10.1111/cts.70078Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1111/cts.70078Direct OA link when available
- Concepts
-
Computer science, Cloud computing, Analytics, Pipeline (software), Data science, Repurposing, Raw data, Blueprint, NoSQL, World Wide Web, Database, Scalability, Engineering, Operating system, Programming language, Mechanical engineering, Waste managementTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
6Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4405376419 |
|---|---|
| doi | https://doi.org/10.1111/cts.70078 |
| ids.doi | https://doi.org/10.1111/cts.70078 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39670335 |
| ids.openalex | https://openalex.org/W4405376419 |
| fwci | 1.43909348 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000067917 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Cloud Computing |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | Q000379 |
| mesh[2].descriptor_ui | D000076722 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | methods |
| mesh[2].descriptor_name | Drug Development |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D020407 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Internet |
| mesh[4].qualifier_ui | Q000706 |
| mesh[4].descriptor_ui | D016208 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | statistics & numerical data |
| mesh[4].descriptor_name | Databases, Factual |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D012984 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Software |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000069550 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Machine Learning |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D000067917 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Cloud Computing |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D006801 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Humans |
| mesh[9].qualifier_ui | Q000379 |
| mesh[9].descriptor_ui | D000076722 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | methods |
| mesh[9].descriptor_name | Drug Development |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D020407 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Internet |
| mesh[11].qualifier_ui | Q000706 |
| mesh[11].descriptor_ui | D016208 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | statistics & numerical data |
| mesh[11].descriptor_name | Databases, Factual |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D012984 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Software |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D000069550 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Machine Learning |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D000067917 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Cloud Computing |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D006801 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Humans |
| mesh[16].qualifier_ui | Q000379 |
| mesh[16].descriptor_ui | D000076722 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | methods |
| mesh[16].descriptor_name | Drug Development |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D020407 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Internet |
| mesh[18].qualifier_ui | Q000706 |
| mesh[18].descriptor_ui | D016208 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | statistics & numerical data |
| mesh[18].descriptor_name | Databases, Factual |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D012984 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Software |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D000069550 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Machine Learning |
| type | article |
| title | Real‐world evidence in the cloud: Tutorial on developing an end‐to‐end data and analytics pipeline using Amazon Web Services resources |
| biblio.issue | 12 |
| biblio.volume | 17 |
| biblio.last_page | e70078 |
| biblio.first_page | e70078 |
| topics[0].id | https://openalex.org/T11396 |
| topics[0].field.id | https://openalex.org/fields/36 |
| topics[0].field.display_name | Health Professions |
| topics[0].score | 0.9498999714851379 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3605 |
| topics[0].subfield.display_name | Health Information Management |
| topics[0].display_name | Artificial Intelligence in Healthcare |
| topics[1].id | https://openalex.org/T12761 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9289000034332275 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Data Stream Mining Techniques |
| topics[2].id | https://openalex.org/T10211 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9049999713897705 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Computational Drug Discovery Methods |
| is_xpac | False |
| apc_list.value | 2750 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3300 |
| apc_paid.value | 2750 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3300 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7489721179008484 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C79974875 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6393988132476807 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q483639 |
| concepts[1].display_name | Cloud computing |
| concepts[2].id | https://openalex.org/C79158427 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6100547313690186 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q485396 |
| concepts[2].display_name | Analytics |
| concepts[3].id | https://openalex.org/C43521106 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5854451656341553 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[3].display_name | Pipeline (software) |
| concepts[4].id | https://openalex.org/C2522767166 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5290802121162415 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[4].display_name | Data science |
| concepts[5].id | https://openalex.org/C519536355 |
| concepts[5].level | 2 |
| concepts[5].score | 0.51251220703125 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21021151 |
| concepts[5].display_name | Repurposing |
| concepts[6].id | https://openalex.org/C132964779 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4897453784942627 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2110223 |
| concepts[6].display_name | Raw data |
| concepts[7].id | https://openalex.org/C155911762 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45333582162857056 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q422321 |
| concepts[7].display_name | Blueprint |
| concepts[8].id | https://openalex.org/C2779599972 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4424417018890381 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q82231 |
| concepts[8].display_name | NoSQL |
| concepts[9].id | https://openalex.org/C136764020 |
| concepts[9].level | 1 |
| concepts[9].score | 0.36075907945632935 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[9].display_name | World Wide Web |
| concepts[10].id | https://openalex.org/C77088390 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3401597738265991 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[10].display_name | Database |
| concepts[11].id | https://openalex.org/C48044578 |
| concepts[11].level | 2 |
| concepts[11].score | 0.3400880694389343 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[11].display_name | Scalability |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.10835283994674683 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C111919701 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[13].display_name | Operating system |
| concepts[14].id | https://openalex.org/C199360897 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[14].display_name | Programming language |
| concepts[15].id | https://openalex.org/C78519656 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[15].display_name | Mechanical engineering |
| concepts[16].id | https://openalex.org/C548081761 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q180388 |
| concepts[16].display_name | Waste management |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7489721179008484 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/cloud-computing |
| keywords[1].score | 0.6393988132476807 |
| keywords[1].display_name | Cloud computing |
| keywords[2].id | https://openalex.org/keywords/analytics |
| keywords[2].score | 0.6100547313690186 |
| keywords[2].display_name | Analytics |
| keywords[3].id | https://openalex.org/keywords/pipeline |
| keywords[3].score | 0.5854451656341553 |
| keywords[3].display_name | Pipeline (software) |
| keywords[4].id | https://openalex.org/keywords/data-science |
| keywords[4].score | 0.5290802121162415 |
| keywords[4].display_name | Data science |
| keywords[5].id | https://openalex.org/keywords/repurposing |
| keywords[5].score | 0.51251220703125 |
| keywords[5].display_name | Repurposing |
| keywords[6].id | https://openalex.org/keywords/raw-data |
| keywords[6].score | 0.4897453784942627 |
| keywords[6].display_name | Raw data |
| keywords[7].id | https://openalex.org/keywords/blueprint |
| keywords[7].score | 0.45333582162857056 |
| keywords[7].display_name | Blueprint |
| keywords[8].id | https://openalex.org/keywords/nosql |
| keywords[8].score | 0.4424417018890381 |
| keywords[8].display_name | NoSQL |
| keywords[9].id | https://openalex.org/keywords/world-wide-web |
| keywords[9].score | 0.36075907945632935 |
| keywords[9].display_name | World Wide Web |
| keywords[10].id | https://openalex.org/keywords/database |
| keywords[10].score | 0.3401597738265991 |
| keywords[10].display_name | Database |
| keywords[11].id | https://openalex.org/keywords/scalability |
| keywords[11].score | 0.3400880694389343 |
| keywords[11].display_name | Scalability |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.10835283994674683 |
| keywords[12].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.1111/cts.70078 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S106654227 |
| locations[0].source.issn | 1752-8054, 1752-8062 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1752-8054 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Clinical and Translational Science |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Clinical and Translational Science |
| locations[0].landing_page_url | https://doi.org/10.1111/cts.70078 |
| locations[1].id | pmid:39670335 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Clinical and translational science |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39670335 |
| locations[2].id | pmh:oai:doaj.org/article:535156f338d44a00ae28c2d8fde68a4c |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Clinical and Translational Science, Vol 17, Iss 12, Pp n/a-n/a (2024) |
| locations[2].landing_page_url | https://doaj.org/article/535156f338d44a00ae28c2d8fde68a4c |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11638732 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Clin Transl Sci |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11638732 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5104315740 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Wes Anderson |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2801686373 |
| authorships[0].affiliations[0].raw_affiliation_string | Critical Path Institute Tucson Arizona USA |
| authorships[0].institutions[0].id | https://openalex.org/I2801686373 |
| authorships[0].institutions[0].ror | https://ror.org/02mgtg880 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I2801686373 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Critical Path Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wes Anderson |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Critical Path Institute Tucson Arizona USA |
| authorships[1].author.id | https://openalex.org/A5085188700 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Roopal Bhatnagar |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2801686373 |
| authorships[1].affiliations[0].raw_affiliation_string | Critical Path Institute Tucson Arizona USA |
| authorships[1].institutions[0].id | https://openalex.org/I2801686373 |
| authorships[1].institutions[0].ror | https://ror.org/02mgtg880 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I2801686373 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Critical Path Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Roopal Bhatnagar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Critical Path Institute Tucson Arizona USA |
| authorships[2].author.id | https://openalex.org/A5021797725 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Keith Scollick |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2801686373 |
| authorships[2].affiliations[0].raw_affiliation_string | Critical Path Institute Tucson Arizona USA |
| authorships[2].institutions[0].id | https://openalex.org/I2801686373 |
| authorships[2].institutions[0].ror | https://ror.org/02mgtg880 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I2801686373 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Critical Path Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Keith Scollick |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Critical Path Institute Tucson Arizona USA |
| authorships[3].author.id | https://openalex.org/A5022691579 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0113-4628 |
| authorships[3].author.display_name | Marco Schito |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I2801686373 |
| authorships[3].affiliations[0].raw_affiliation_string | Critical Path Institute Tucson Arizona USA |
| authorships[3].institutions[0].id | https://openalex.org/I2801686373 |
| authorships[3].institutions[0].ror | https://ror.org/02mgtg880 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I2801686373 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Critical Path Institute |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Marco Schito |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Critical Path Institute Tucson Arizona USA |
| authorships[4].author.id | https://openalex.org/A5015253000 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8815-0078 |
| authorships[4].author.display_name | Ramona Walls |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I2801686373 |
| authorships[4].affiliations[0].raw_affiliation_string | Critical Path Institute Tucson Arizona USA |
| authorships[4].institutions[0].id | https://openalex.org/I2801686373 |
| authorships[4].institutions[0].ror | https://ror.org/02mgtg880 |
| authorships[4].institutions[0].type | nonprofit |
| authorships[4].institutions[0].lineage | https://openalex.org/I2801686373 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Critical Path Institute |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ramona Walls |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Critical Path Institute Tucson Arizona USA |
| authorships[5].author.id | https://openalex.org/A5000995300 |
| authorships[5].author.orcid | https://orcid.org/0009-0001-3922-3549 |
| authorships[5].author.display_name | Jagdeep T. Podichetty |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I2801686373 |
| authorships[5].affiliations[0].raw_affiliation_string | Critical Path Institute Tucson Arizona USA |
| authorships[5].institutions[0].id | https://openalex.org/I2801686373 |
| authorships[5].institutions[0].ror | https://ror.org/02mgtg880 |
| authorships[5].institutions[0].type | nonprofit |
| authorships[5].institutions[0].lineage | https://openalex.org/I2801686373 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Critical Path Institute |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jagdeep T. Podichetty |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Critical Path Institute Tucson Arizona USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1111/cts.70078 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Real‐world evidence in the cloud: Tutorial on developing an end‐to‐end data and analytics pipeline using Amazon Web Services resources |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11396 |
| primary_topic.field.id | https://openalex.org/fields/36 |
| primary_topic.field.display_name | Health Professions |
| primary_topic.score | 0.9498999714851379 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3605 |
| primary_topic.subfield.display_name | Health Information Management |
| primary_topic.display_name | Artificial Intelligence in Healthcare |
| related_works | https://openalex.org/W2799973158, https://openalex.org/W2419153746, https://openalex.org/W3089119258, https://openalex.org/W2923327995, https://openalex.org/W2518340158, https://openalex.org/W3147331693, https://openalex.org/W349054995, https://openalex.org/W2086537700, https://openalex.org/W2997849137, https://openalex.org/W2081547215 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1111/cts.70078 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S106654227 |
| best_oa_location.source.issn | 1752-8054, 1752-8062 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1752-8054 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Clinical and Translational Science |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Clinical and Translational Science |
| best_oa_location.landing_page_url | https://doi.org/10.1111/cts.70078 |
| primary_location.id | doi:10.1111/cts.70078 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S106654227 |
| primary_location.source.issn | 1752-8054, 1752-8062 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1752-8054 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Clinical and Translational Science |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Clinical and Translational Science |
| primary_location.landing_page_url | https://doi.org/10.1111/cts.70078 |
| publication_date | 2024-12-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4392236018, https://openalex.org/W2781502247, https://openalex.org/W4317619305, https://openalex.org/W4237791300, https://openalex.org/W6949549905, https://openalex.org/W4395051554 |
| referenced_works_count | 6 |
| abstract_inverted_index.a | 34, 45, 66, 83, 164 |
| abstract_inverted_index.By | 95 |
| abstract_inverted_index.ID | 81, 159 |
| abstract_inverted_index.In | 1 |
| abstract_inverted_index.an | 38 |
| abstract_inverted_index.as | 99 |
| abstract_inverted_index.be | 171 |
| abstract_inverted_index.by | 65 |
| abstract_inverted_index.in | 44 |
| abstract_inverted_index.is | 25, 76 |
| abstract_inverted_index.of | 6, 21, 68, 117, 123, 131, 140, 156 |
| abstract_inverted_index.to | 13, 87, 176 |
| abstract_inverted_index.AWS | 100 |
| abstract_inverted_index.The | 48, 74, 148 |
| abstract_inverted_index.Web | 70 |
| abstract_inverted_index.and | 8, 17, 41, 61, 89, 109, 137, 166 |
| abstract_inverted_index.but | 161 |
| abstract_inverted_index.can | 170 |
| abstract_inverted_index.for | 27, 36, 134, 145 |
| abstract_inverted_index.not | 151 |
| abstract_inverted_index.raw | 124 |
| abstract_inverted_index.the | 2, 11, 79, 112, 115, 121, 129, 138, 154, 157 |
| abstract_inverted_index.CURE | 80, 158 |
| abstract_inverted_index.This | 31 |
| abstract_inverted_index.also | 162 |
| abstract_inverted_index.data | 23, 40, 57, 119, 125, 135, 146 |
| abstract_inverted_index.drug | 9, 29, 182 |
| abstract_inverted_index.each | 63 |
| abstract_inverted_index.four | 53 |
| abstract_inverted_index.here | 51 |
| abstract_inverted_index.into | 126 |
| abstract_inverted_index.only | 152 |
| abstract_inverted_index.such | 98 |
| abstract_inverted_index.that | 169 |
| abstract_inverted_index.tool | 85 |
| abstract_inverted_index.(AWS) | 72 |
| abstract_inverted_index.(RWD) | 24 |
| abstract_inverted_index.large | 19 |
| abstract_inverted_index.major | 54 |
| abstract_inverted_index.needs | 155 |
| abstract_inverted_index.suite | 67 |
| abstract_inverted_index.using | 96 |
| abstract_inverted_index.(RDS), | 106 |
| abstract_inverted_index.Amazon | 69, 102, 107, 110 |
| abstract_inverted_index.across | 173 |
| abstract_inverted_index.beyond | 181 |
| abstract_inverted_index.making | 180 |
| abstract_inverted_index.models | 144 |
| abstract_inverted_index.offers | 163 |
| abstract_inverted_index.tools. | 73 |
| abstract_inverted_index.Lambda, | 101 |
| abstract_inverted_index.Service | 105 |
| abstract_inverted_index.ability | 12 |
| abstract_inverted_index.analyze | 18, 90 |
| abstract_inverted_index.applied | 172 |
| abstract_inverted_index.article | 32 |
| abstract_inverted_index.capture | 88 |
| abstract_inverted_index.diverse | 118 |
| abstract_inverted_index.domains | 175 |
| abstract_inverted_index.enhance | 177 |
| abstract_inverted_index.machine | 142 |
| abstract_inverted_index.rapidly | 3 |
| abstract_inverted_index.through | 78 |
| abstract_inverted_index.various | 174 |
| abstract_inverted_index.volumes | 20 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Database | 104 |
| abstract_inverted_index.Services | 71 |
| abstract_inverted_index.advanced | 141 |
| abstract_inverted_index.collect, | 15 |
| abstract_inverted_index.creation | 130 |
| abstract_inverted_index.critical | 26 |
| abstract_inverted_index.decision | 179 |
| abstract_inverted_index.designed | 86 |
| abstract_inverted_index.evolving | 4 |
| abstract_inverted_index.formats, | 128 |
| abstract_inverted_index.includes | 52 |
| abstract_inverted_index.learning | 143 |
| abstract_inverted_index.pipeline | 43, 49, 75, 113 |
| abstract_inverted_index.process, | 16 |
| abstract_inverted_index.provides | 33 |
| abstract_inverted_index.scalable | 165 |
| abstract_inverted_index.services | 97 |
| abstract_inverted_index.sources, | 120 |
| abstract_inverted_index.supports | 153 |
| abstract_inverted_index.adaptable | 167 |
| abstract_inverted_index.advancing | 28 |
| abstract_inverted_index.analytics | 42 |
| abstract_inverted_index.blueprint | 35 |
| abstract_inverted_index.described | 149 |
| abstract_inverted_index.framework | 168 |
| abstract_inverted_index.including | 56 |
| abstract_inverted_index.ingestion | 116 |
| abstract_inverted_index.landscape | 5 |
| abstract_inverted_index.platform, | 82, 160 |
| abstract_inverted_index.presented | 50 |
| abstract_inverted_index.supported | 64 |
| abstract_inverted_index.treatment | 93 |
| abstract_inverted_index.Relational | 103 |
| abstract_inverted_index.SageMaker, | 111 |
| abstract_inverted_index.analytics, | 62 |
| abstract_inverted_index.analytics. | 147 |
| abstract_inverted_index.dashboards | 133 |
| abstract_inverted_index.healthcare | 7 |
| abstract_inverted_index.ingestion, | 58 |
| abstract_inverted_index.structured | 127 |
| abstract_inverted_index.QuickSight, | 108 |
| abstract_inverted_index.application | 139 |
| abstract_inverted_index.components, | 55 |
| abstract_inverted_index.efficiently | 14 |
| abstract_inverted_index.exemplified | 77 |
| abstract_inverted_index.facilitates | 114 |
| abstract_inverted_index.interactive | 132 |
| abstract_inverted_index.off‐label | 92 |
| abstract_inverted_index.architecture | 150 |
| abstract_inverted_index.development, | 10 |
| abstract_inverted_index.development. | 30 |
| abstract_inverted_index.environment. | 47 |
| abstract_inverted_index.establishing | 37 |
| abstract_inverted_index.real‐world | 22 |
| abstract_inverted_index.repurposing. | 183 |
| abstract_inverted_index.cloud‐based | 46 |
| abstract_inverted_index.collaborative | 84 |
| abstract_inverted_index.data‐driven | 178 |
| abstract_inverted_index.real‐world, | 91 |
| abstract_inverted_index.end‐to‐end | 39 |
| abstract_inverted_index.transformation | 122 |
| abstract_inverted_index.visualization, | 60, 136 |
| abstract_inverted_index.transformation, | 59 |
| abstract_inverted_index.administrations. | 94 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.4399999976158142 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.83315718 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |