Reasoning with Reinforced Functional Token Tuning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2502.13389
In this work, we propose Reinforced Functional Token Tuning (RFTT), a novel reinforced fine-tuning framework that empowers Large Language Models (LLMs) with self-play learn-to-reason capabilities. Unlike prior prompt-driven reasoning efforts, RFTT embeds a rich set of learnable functional tokens (e.g., , , ) directly into the model vocabulary, enabling chain-of-thought construction with diverse human-like reasoning behaviors. Specifically, RFTT comprises two phases: (1) supervised fine-tuning performs prompt-driven tree search to obtain self-generated training data annotated with functional tokens, which warms up the model to learn these tokens for reasoning; and (2) online reinforcement learning further allows the model to explore different reasoning pathways through functional token sampling without relying on prompts, thereby facilitating effective self-improvement for functional reasoning. Extensive experiments demonstrate the superiority of the proposed RFTT on mathematical benchmarks, significantly boosting Qwen-2.5-7B-Instruct (70.6% to 79.8%) and LLaMA-3.1-8B-Instruct (32.2% to 60.2%) on the MATH dataset. Moreover, the performance of RFTT consistently improves with more search rollouts at inference time. Our code is available at https://github.com/sastpg/RFTT.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2502.13389
- https://arxiv.org/pdf/2502.13389
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4407764166
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4407764166Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2502.13389Digital Object Identifier
- Title
-
Reasoning with Reinforced Functional Token TuningWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-02-19Full publication date if available
- Authors
-
K. Zhang, Qi Yao, Baisheng Lai, Jiaxing Huang, Wenkai Fang, Dacheng Tao, Mingli Song, Shunyu LiuList of authors in order
- Landing page
-
https://arxiv.org/abs/2502.13389Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2502.13389Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2502.13389Direct OA link when available
- Concepts
-
Security token, Computer science, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4407764166 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2502.13389 |
| ids.doi | https://doi.org/10.48550/arxiv.2502.13389 |
| ids.openalex | https://openalex.org/W4407764166 |
| fwci | |
| type | preprint |
| title | Reasoning with Reinforced Functional Token Tuning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10215 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.968999981880188 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Semantic Web and Ontologies |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9300000071525574 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T11010 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9182000160217285 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Logic, Reasoning, and Knowledge |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C48145219 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8233257532119751 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1335365 |
| concepts[0].display_name | Security token |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5094476342201233 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C38652104 |
| concepts[2].level | 1 |
| concepts[2].score | 0.17612555623054504 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[2].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/security-token |
| keywords[0].score | 0.8233257532119751 |
| keywords[0].display_name | Security token |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5094476342201233 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/computer-security |
| keywords[2].score | 0.17612555623054504 |
| keywords[2].display_name | Computer security |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2502.13389 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2502.13389 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2502.13389 |
| locations[1].id | doi:10.48550/arxiv.2502.13389 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2502.13389 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5115603666 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7138-9477 |
| authorships[0].author.display_name | K. Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Kongcheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101598160 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1332-7323 |
| authorships[1].author.display_name | Qi Yao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yao, Qi |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5057196915 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8939-041X |
| authorships[2].author.display_name | Baisheng Lai |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lai, Baisheng |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5108055047 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5353-7843 |
| authorships[3].author.display_name | Jiaxing Huang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Huang, Jiaxing |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5111361888 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Wenkai Fang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Fang, Wenkai |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5074103823 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7225-5449 |
| authorships[5].author.display_name | Dacheng Tao |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Tao, Dacheng |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5026532752 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2621-6048 |
| authorships[6].author.display_name | Mingli Song |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Song, Mingli |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5090854835 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-0584-9129 |
| authorships[7].author.display_name | Shunyu Liu |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Liu, Shunyu |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2502.13389 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Reasoning with Reinforced Functional Token Tuning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10215 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.968999981880188 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Semantic Web and Ontologies |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4388335561, https://openalex.org/W2970530566, https://openalex.org/W4288261899, https://openalex.org/W4307309205, https://openalex.org/W2967478618, https://openalex.org/W4385009901, https://openalex.org/W4385572700 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2502.13389 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2502.13389 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2502.13389 |
| primary_location.id | pmh:oai:arXiv.org:2502.13389 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2502.13389 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2502.13389 |
| publication_date | 2025-02-19 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.) | 42 |
| abstract_inverted_index., | 40, 41 |
| abstract_inverted_index.a | 10, 32 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.at | 155, 162 |
| abstract_inverted_index.is | 160 |
| abstract_inverted_index.of | 35, 122, 147 |
| abstract_inverted_index.on | 108, 126, 140 |
| abstract_inverted_index.to | 68, 82, 97, 133, 138 |
| abstract_inverted_index.up | 79 |
| abstract_inverted_index.we | 3 |
| abstract_inverted_index.(1) | 61 |
| abstract_inverted_index.(2) | 89 |
| abstract_inverted_index.Our | 158 |
| abstract_inverted_index.and | 88, 135 |
| abstract_inverted_index.for | 86, 114 |
| abstract_inverted_index.set | 34 |
| abstract_inverted_index.the | 45, 80, 95, 120, 123, 141, 145 |
| abstract_inverted_index.two | 59 |
| abstract_inverted_index.MATH | 142 |
| abstract_inverted_index.RFTT | 30, 57, 125, 148 |
| abstract_inverted_index.code | 159 |
| abstract_inverted_index.data | 72 |
| abstract_inverted_index.into | 44 |
| abstract_inverted_index.more | 152 |
| abstract_inverted_index.rich | 33 |
| abstract_inverted_index.that | 15 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.tree | 66 |
| abstract_inverted_index.with | 21, 51, 74, 151 |
| abstract_inverted_index.Large | 17 |
| abstract_inverted_index.Token | 7 |
| abstract_inverted_index.learn | 83 |
| abstract_inverted_index.model | 46, 81, 96 |
| abstract_inverted_index.novel | 11 |
| abstract_inverted_index.prior | 26 |
| abstract_inverted_index.these | 84 |
| abstract_inverted_index.time. | 157 |
| abstract_inverted_index.token | 104 |
| abstract_inverted_index.warms | 78 |
| abstract_inverted_index.which | 77 |
| abstract_inverted_index.work, | 2 |
| abstract_inverted_index.(32.2% | 137 |
| abstract_inverted_index.(70.6% | 132 |
| abstract_inverted_index.(LLMs) | 20 |
| abstract_inverted_index.(e.g., | 39 |
| abstract_inverted_index.60.2%) | 139 |
| abstract_inverted_index.79.8%) | 134 |
| abstract_inverted_index.Models | 19 |
| abstract_inverted_index.Tuning | 8 |
| abstract_inverted_index.Unlike | 25 |
| abstract_inverted_index.allows | 94 |
| abstract_inverted_index.embeds | 31 |
| abstract_inverted_index.obtain | 69 |
| abstract_inverted_index.online | 90 |
| abstract_inverted_index.search | 67, 153 |
| abstract_inverted_index.tokens | 38, 85 |
| abstract_inverted_index.(RFTT), | 9 |
| abstract_inverted_index.diverse | 52 |
| abstract_inverted_index.explore | 98 |
| abstract_inverted_index.further | 93 |
| abstract_inverted_index.phases: | 60 |
| abstract_inverted_index.propose | 4 |
| abstract_inverted_index.relying | 107 |
| abstract_inverted_index.thereby | 110 |
| abstract_inverted_index.through | 102 |
| abstract_inverted_index.tokens, | 76 |
| abstract_inverted_index.without | 106 |
| abstract_inverted_index.Language | 18 |
| abstract_inverted_index.boosting | 130 |
| abstract_inverted_index.dataset. | 143 |
| abstract_inverted_index.directly | 43 |
| abstract_inverted_index.efforts, | 29 |
| abstract_inverted_index.empowers | 16 |
| abstract_inverted_index.enabling | 48 |
| abstract_inverted_index.improves | 150 |
| abstract_inverted_index.learning | 92 |
| abstract_inverted_index.pathways | 101 |
| abstract_inverted_index.performs | 64 |
| abstract_inverted_index.prompts, | 109 |
| abstract_inverted_index.proposed | 124 |
| abstract_inverted_index.rollouts | 154 |
| abstract_inverted_index.sampling | 105 |
| abstract_inverted_index.training | 71 |
| abstract_inverted_index.Extensive | 117 |
| abstract_inverted_index.Moreover, | 144 |
| abstract_inverted_index.annotated | 73 |
| abstract_inverted_index.available | 161 |
| abstract_inverted_index.comprises | 58 |
| abstract_inverted_index.different | 99 |
| abstract_inverted_index.effective | 112 |
| abstract_inverted_index.framework | 14 |
| abstract_inverted_index.inference | 156 |
| abstract_inverted_index.learnable | 36 |
| abstract_inverted_index.reasoning | 28, 54, 100 |
| abstract_inverted_index.self-play | 22 |
| abstract_inverted_index.Functional | 6 |
| abstract_inverted_index.Reinforced | 5 |
| abstract_inverted_index.behaviors. | 55 |
| abstract_inverted_index.functional | 37, 75, 103, 115 |
| abstract_inverted_index.human-like | 53 |
| abstract_inverted_index.reasoning. | 116 |
| abstract_inverted_index.reasoning; | 87 |
| abstract_inverted_index.reinforced | 12 |
| abstract_inverted_index.supervised | 62 |
| abstract_inverted_index.benchmarks, | 128 |
| abstract_inverted_index.demonstrate | 119 |
| abstract_inverted_index.experiments | 118 |
| abstract_inverted_index.fine-tuning | 13, 63 |
| abstract_inverted_index.performance | 146 |
| abstract_inverted_index.superiority | 121 |
| abstract_inverted_index.vocabulary, | 47 |
| abstract_inverted_index.consistently | 149 |
| abstract_inverted_index.construction | 50 |
| abstract_inverted_index.facilitating | 111 |
| abstract_inverted_index.mathematical | 127 |
| abstract_inverted_index.Specifically, | 56 |
| abstract_inverted_index.capabilities. | 24 |
| abstract_inverted_index.prompt-driven | 27, 65 |
| abstract_inverted_index.reinforcement | 91 |
| abstract_inverted_index.significantly | 129 |
| abstract_inverted_index.self-generated | 70 |
| abstract_inverted_index.learn-to-reason | 23 |
| abstract_inverted_index.chain-of-thought | 49 |
| abstract_inverted_index.self-improvement | 113 |
| abstract_inverted_index.Qwen-2.5-7B-Instruct | 131 |
| abstract_inverted_index.LLaMA-3.1-8B-Instruct | 136 |
| abstract_inverted_index.https://github.com/sastpg/RFTT. | 163 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| citation_normalized_percentile |