Recent Advances on Neural Network Pruning at Initialization Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.24963/ijcai.2022/786
Neural network pruning typically removes connections or neurons from a pretrained converged model; while a new pruning paradigm, pruning at initialization (PaI), attempts to prune a randomly initialized network. This paper offers the first survey concentrated on this emerging pruning fashion. We first introduce a generic formulation of neural network pruning, followed by the major classic pruning topics. Then, as the main body of this paper, a thorough and structured literature review of PaI methods is presented, consisting of two major tracks (sparse training and sparse selection). Finally, we summarize the surge of PaI compared to PaT and discuss the open problems. Apart from the dedicated literature review, this paper also offers a code base for easy sanity-checking and benchmarking of different PaI methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.24963/ijcai.2022/786
- https://www.ijcai.org/proceedings/2022/0786.pdf
- OA Status
- bronze
- Cited By
- 47
- References
- 92
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4223937247
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4223937247Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.24963/ijcai.2022/786Digital Object Identifier
- Title
-
Recent Advances on Neural Network Pruning at InitializationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-01Full publication date if available
- Authors
-
Huan Wang, Can Qin, Yue Bai, Yulun Zhang, Yun FuList of authors in order
- Landing page
-
https://doi.org/10.24963/ijcai.2022/786Publisher landing page
- PDF URL
-
https://www.ijcai.org/proceedings/2022/0786.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://www.ijcai.org/proceedings/2022/0786.pdfDirect OA link when available
- Concepts
-
Pruning, Initialization, Computer science, Artificial neural network, Machine learning, Artificial intelligence, Benchmarking, Code (set theory), Selection (genetic algorithm), Programming language, Agronomy, Set (abstract data type), Marketing, Biology, BusinessTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
47Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 9, 2024: 21, 2023: 16, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
92Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4223937247 |
|---|---|
| doi | https://doi.org/10.24963/ijcai.2022/786 |
| ids.doi | https://doi.org/10.24963/ijcai.2022/786 |
| ids.openalex | https://openalex.org/W4223937247 |
| fwci | 3.24507999 |
| type | article |
| title | Recent Advances on Neural Network Pruning at Initialization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 5645 |
| biblio.first_page | 5638 |
| topics[0].id | https://openalex.org/T10036 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Neural Network Applications |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9991999864578247 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T11689 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.998199999332428 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Adversarial Robustness in Machine Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C108010975 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8705540895462036 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q500094 |
| concepts[0].display_name | Pruning |
| concepts[1].id | https://openalex.org/C114466953 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8517727851867676 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6034165 |
| concepts[1].display_name | Initialization |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.788184642791748 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6736241579055786 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.579813539981842 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5454661250114441 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C86251818 |
| concepts[6].level | 2 |
| concepts[6].score | 0.527969479560852 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q816754 |
| concepts[6].display_name | Benchmarking |
| concepts[7].id | https://openalex.org/C2776760102 |
| concepts[7].level | 3 |
| concepts[7].score | 0.459375262260437 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[7].display_name | Code (set theory) |
| concepts[8].id | https://openalex.org/C81917197 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4273327589035034 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[8].display_name | Selection (genetic algorithm) |
| concepts[9].id | https://openalex.org/C199360897 |
| concepts[9].level | 1 |
| concepts[9].score | 0.07659387588500977 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[9].display_name | Programming language |
| concepts[10].id | https://openalex.org/C6557445 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[10].display_name | Agronomy |
| concepts[11].id | https://openalex.org/C177264268 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[11].display_name | Set (abstract data type) |
| concepts[12].id | https://openalex.org/C162853370 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q39809 |
| concepts[12].display_name | Marketing |
| concepts[13].id | https://openalex.org/C86803240 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[13].display_name | Biology |
| concepts[14].id | https://openalex.org/C144133560 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[14].display_name | Business |
| keywords[0].id | https://openalex.org/keywords/pruning |
| keywords[0].score | 0.8705540895462036 |
| keywords[0].display_name | Pruning |
| keywords[1].id | https://openalex.org/keywords/initialization |
| keywords[1].score | 0.8517727851867676 |
| keywords[1].display_name | Initialization |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.788184642791748 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.6736241579055786 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.579813539981842 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5454661250114441 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/benchmarking |
| keywords[6].score | 0.527969479560852 |
| keywords[6].display_name | Benchmarking |
| keywords[7].id | https://openalex.org/keywords/code |
| keywords[7].score | 0.459375262260437 |
| keywords[7].display_name | Code (set theory) |
| keywords[8].id | https://openalex.org/keywords/selection |
| keywords[8].score | 0.4273327589035034 |
| keywords[8].display_name | Selection (genetic algorithm) |
| keywords[9].id | https://openalex.org/keywords/programming-language |
| keywords[9].score | 0.07659387588500977 |
| keywords[9].display_name | Programming language |
| language | en |
| locations[0].id | doi:10.24963/ijcai.2022/786 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4363608755 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://www.ijcai.org/proceedings/2022/0786.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.24963/ijcai.2022/786 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100332049 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-0124-1081 |
| authorships[0].author.display_name | Huan Wang |
| authorships[0].countries | MX |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I87182695 |
| authorships[0].affiliations[0].raw_affiliation_string | Northeastern University |
| authorships[0].institutions[0].id | https://openalex.org/I87182695 |
| authorships[0].institutions[0].ror | https://ror.org/02ahky613 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I87182695 |
| authorships[0].institutions[0].country_code | MX |
| authorships[0].institutions[0].display_name | Universidad del Noreste |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huan Wang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Northeastern University |
| authorships[1].author.id | https://openalex.org/A5021042598 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0712-5378 |
| authorships[1].author.display_name | Can Qin |
| authorships[1].countries | MX |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I87182695 |
| authorships[1].affiliations[0].raw_affiliation_string | Northeastern University |
| authorships[1].institutions[0].id | https://openalex.org/I87182695 |
| authorships[1].institutions[0].ror | https://ror.org/02ahky613 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I87182695 |
| authorships[1].institutions[0].country_code | MX |
| authorships[1].institutions[0].display_name | Universidad del Noreste |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Can Qin |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Northeastern University |
| authorships[2].author.id | https://openalex.org/A5036001582 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6023-6064 |
| authorships[2].author.display_name | Yue Bai |
| authorships[2].countries | MX |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I87182695 |
| authorships[2].affiliations[0].raw_affiliation_string | Northeastern University |
| authorships[2].institutions[0].id | https://openalex.org/I87182695 |
| authorships[2].institutions[0].ror | https://ror.org/02ahky613 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I87182695 |
| authorships[2].institutions[0].country_code | MX |
| authorships[2].institutions[0].display_name | Universidad del Noreste |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yue Bai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Northeastern University |
| authorships[3].author.id | https://openalex.org/A5074865219 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2288-5079 |
| authorships[3].author.display_name | Yulun Zhang |
| authorships[3].countries | CH |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I35440088 |
| authorships[3].affiliations[0].raw_affiliation_string | ETH Zurich |
| authorships[3].institutions[0].id | https://openalex.org/I35440088 |
| authorships[3].institutions[0].ror | https://ror.org/05a28rw58 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I2799323385, https://openalex.org/I35440088 |
| authorships[3].institutions[0].country_code | CH |
| authorships[3].institutions[0].display_name | ETH Zurich |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yulun Zhang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | ETH Zurich |
| authorships[4].author.id | https://openalex.org/A5108615554 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Yun Fu |
| authorships[4].countries | MX |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I87182695 |
| authorships[4].affiliations[0].raw_affiliation_string | Northeastern University |
| authorships[4].institutions[0].id | https://openalex.org/I87182695 |
| authorships[4].institutions[0].ror | https://ror.org/02ahky613 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I87182695 |
| authorships[4].institutions[0].country_code | MX |
| authorships[4].institutions[0].display_name | Universidad del Noreste |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yun Fu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Northeastern University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ijcai.org/proceedings/2022/0786.pdf |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Recent Advances on Neural Network Pruning at Initialization |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10036 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Neural Network Applications |
| related_works | https://openalex.org/W4238897586, https://openalex.org/W435179959, https://openalex.org/W2619091065, https://openalex.org/W2059640416, https://openalex.org/W1490753184, https://openalex.org/W2284465472, https://openalex.org/W2291782699, https://openalex.org/W2951598131, https://openalex.org/W4221159459, https://openalex.org/W3128136716 |
| cited_by_count | 47 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 9 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 21 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 16 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.24963/ijcai.2022/786 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4363608755 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.ijcai.org/proceedings/2022/0786.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence |
| best_oa_location.landing_page_url | https://doi.org/10.24963/ijcai.2022/786 |
| primary_location.id | doi:10.24963/ijcai.2022/786 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4363608755 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://www.ijcai.org/proceedings/2022/0786.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.24963/ijcai.2022/786 |
| publication_date | 2022-07-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2768501777, https://openalex.org/W6863994431, https://openalex.org/W3012561096, https://openalex.org/W3129112245, https://openalex.org/W6751979845, https://openalex.org/W2507318699, https://openalex.org/W2125389748, https://openalex.org/W6687483927, https://openalex.org/W2886851211, https://openalex.org/W3129093240, https://openalex.org/W1520252399, https://openalex.org/W1522301498, https://openalex.org/W6677103964, https://openalex.org/W2894740066, https://openalex.org/W2951598131, https://openalex.org/W6803771590, https://openalex.org/W2515385951, https://openalex.org/W3004334800, https://openalex.org/W2736953746, https://openalex.org/W2707890836, https://openalex.org/W2955419283, https://openalex.org/W2948253213, https://openalex.org/W2907886210, https://openalex.org/W2134273960, https://openalex.org/W3034665240, https://openalex.org/W2125930537, https://openalex.org/W6669567237, https://openalex.org/W1686810756, https://openalex.org/W2739160792, https://openalex.org/W3205860595, https://openalex.org/W3088750390, https://openalex.org/W2604319603, https://openalex.org/W3034877463, https://openalex.org/W6683581212, https://openalex.org/W6864014924, https://openalex.org/W2995492258, https://openalex.org/W3111652984, https://openalex.org/W2995197005, https://openalex.org/W2948130861, https://openalex.org/W6791858558, https://openalex.org/W2943283198, https://openalex.org/W2981407587, https://openalex.org/W4289293816, https://openalex.org/W2915589364, https://openalex.org/W3101584733, https://openalex.org/W3005842225, https://openalex.org/W4286901891, https://openalex.org/W2949413532, https://openalex.org/W3167447217, https://openalex.org/W3137329786, https://openalex.org/W2896409484, https://openalex.org/W3213530295, https://openalex.org/W4287753960, https://openalex.org/W2076063813, https://openalex.org/W4287363917, https://openalex.org/W2787884921, https://openalex.org/W2965862774, https://openalex.org/W3104688113, https://openalex.org/W2996074092, https://openalex.org/W3092446983, https://openalex.org/W2998543159, https://openalex.org/W3087194612, https://openalex.org/W2947996606, https://openalex.org/W2963417959, https://openalex.org/W3168545914, https://openalex.org/W3126996274, https://openalex.org/W4287864853, https://openalex.org/W3202528415, https://openalex.org/W2962965870, https://openalex.org/W4300971654, https://openalex.org/W2963981420, https://openalex.org/W3034234149, https://openalex.org/W4287662762, https://openalex.org/W2805003733, https://openalex.org/W2949941638, https://openalex.org/W4230674625, https://openalex.org/W2970277060, https://openalex.org/W2783538964, https://openalex.org/W4287752407, https://openalex.org/W2194775991, https://openalex.org/W3104263050, https://openalex.org/W2956434358, https://openalex.org/W3129460265, https://openalex.org/W2990844796, https://openalex.org/W3168260561, https://openalex.org/W2145085734, https://openalex.org/W2954650510, https://openalex.org/W3124987929, https://openalex.org/W3212611649, https://openalex.org/W4302028573, https://openalex.org/W4226517473, https://openalex.org/W2978081181 |
| referenced_works_count | 92 |
| abstract_inverted_index.a | 9, 14, 25, 44, 66, 112 |
| abstract_inverted_index.We | 41 |
| abstract_inverted_index.as | 59 |
| abstract_inverted_index.at | 19 |
| abstract_inverted_index.by | 52 |
| abstract_inverted_index.is | 75 |
| abstract_inverted_index.of | 47, 63, 72, 78, 92, 120 |
| abstract_inverted_index.on | 36 |
| abstract_inverted_index.or | 6 |
| abstract_inverted_index.to | 23, 95 |
| abstract_inverted_index.we | 88 |
| abstract_inverted_index.PaI | 73, 93, 122 |
| abstract_inverted_index.PaT | 96 |
| abstract_inverted_index.and | 68, 84, 97, 118 |
| abstract_inverted_index.for | 115 |
| abstract_inverted_index.new | 15 |
| abstract_inverted_index.the | 32, 53, 60, 90, 99, 104 |
| abstract_inverted_index.two | 79 |
| abstract_inverted_index.This | 29 |
| abstract_inverted_index.also | 110 |
| abstract_inverted_index.base | 114 |
| abstract_inverted_index.body | 62 |
| abstract_inverted_index.code | 113 |
| abstract_inverted_index.easy | 116 |
| abstract_inverted_index.from | 8, 103 |
| abstract_inverted_index.main | 61 |
| abstract_inverted_index.open | 100 |
| abstract_inverted_index.this | 37, 64, 108 |
| abstract_inverted_index.Apart | 102 |
| abstract_inverted_index.Then, | 58 |
| abstract_inverted_index.first | 33, 42 |
| abstract_inverted_index.major | 54, 80 |
| abstract_inverted_index.paper | 30, 109 |
| abstract_inverted_index.prune | 24 |
| abstract_inverted_index.surge | 91 |
| abstract_inverted_index.while | 13 |
| abstract_inverted_index.(PaI), | 21 |
| abstract_inverted_index.Neural | 0 |
| abstract_inverted_index.model; | 12 |
| abstract_inverted_index.neural | 48 |
| abstract_inverted_index.offers | 31, 111 |
| abstract_inverted_index.paper, | 65 |
| abstract_inverted_index.review | 71 |
| abstract_inverted_index.sparse | 85 |
| abstract_inverted_index.survey | 34 |
| abstract_inverted_index.tracks | 81 |
| abstract_inverted_index.(sparse | 82 |
| abstract_inverted_index.classic | 55 |
| abstract_inverted_index.discuss | 98 |
| abstract_inverted_index.generic | 45 |
| abstract_inverted_index.methods | 74 |
| abstract_inverted_index.network | 1, 49 |
| abstract_inverted_index.neurons | 7 |
| abstract_inverted_index.pruning | 2, 16, 18, 39, 56 |
| abstract_inverted_index.removes | 4 |
| abstract_inverted_index.review, | 107 |
| abstract_inverted_index.topics. | 57 |
| abstract_inverted_index.Finally, | 87 |
| abstract_inverted_index.attempts | 22 |
| abstract_inverted_index.compared | 94 |
| abstract_inverted_index.emerging | 38 |
| abstract_inverted_index.fashion. | 40 |
| abstract_inverted_index.followed | 51 |
| abstract_inverted_index.methods. | 123 |
| abstract_inverted_index.network. | 28 |
| abstract_inverted_index.pruning, | 50 |
| abstract_inverted_index.randomly | 26 |
| abstract_inverted_index.thorough | 67 |
| abstract_inverted_index.training | 83 |
| abstract_inverted_index.converged | 11 |
| abstract_inverted_index.dedicated | 105 |
| abstract_inverted_index.different | 121 |
| abstract_inverted_index.introduce | 43 |
| abstract_inverted_index.paradigm, | 17 |
| abstract_inverted_index.problems. | 101 |
| abstract_inverted_index.summarize | 89 |
| abstract_inverted_index.typically | 3 |
| abstract_inverted_index.consisting | 77 |
| abstract_inverted_index.literature | 70, 106 |
| abstract_inverted_index.presented, | 76 |
| abstract_inverted_index.pretrained | 10 |
| abstract_inverted_index.structured | 69 |
| abstract_inverted_index.connections | 5 |
| abstract_inverted_index.formulation | 46 |
| abstract_inverted_index.initialized | 27 |
| abstract_inverted_index.selection). | 86 |
| abstract_inverted_index.benchmarking | 119 |
| abstract_inverted_index.concentrated | 35 |
| abstract_inverted_index.initialization | 20 |
| abstract_inverted_index.sanity-checking | 117 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.93696459 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |