Recognition of Brahmi Words by Using Deep Convolutional Neural Network Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202005.0455.v1
Significant progress has made in pattern recognition technology. However, one obstacle that has not yet overcome is the recognition of words in the Brahmi script, specifically the identification of characters, compound characters, and word. This study proposes the use of the deep convolutional neural network with dropout to recognize the Brahmi words. This study also proposed a DCNN for Brahmi word recognition and a series of experiments are performed on standard Brahmi dataset. The practical operation of this method was systematically tested on accessible Brahmi image database, achieving 92.47% recognition rate by CNN with dropout respectively which is among the best while comparing with the ones reported in the literature for the same task.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202005.0455.v1
- https://www.preprints.org/manuscript/202005.0455/v1/download
- OA Status
- green
- Cited By
- 10
- References
- 47
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3031686513
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3031686513Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202005.0455.v1Digital Object Identifier
- Title
-
Recognition of Brahmi Words by Using Deep Convolutional Neural NetworkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-05-28Full publication date if available
- Authors
-
Neha Gautam, Soo See Chai, Jais JoseList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202005.0455.v1Publisher landing page
- PDF URL
-
https://www.preprints.org/manuscript/202005.0455/v1/downloadDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.preprints.org/manuscript/202005.0455/v1/downloadDirect OA link when available
- Concepts
-
Dropout (neural networks), Convolutional neural network, Artificial intelligence, Computer science, Pattern recognition (psychology), Word (group theory), Task (project management), Identification (biology), Natural language processing, Speech recognition, Machine learning, Mathematics, Engineering, Botany, Systems engineering, Geometry, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 5, 2022: 2, 2020: 2Per-year citation counts (last 5 years)
- References (count)
-
47Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3031686513 |
|---|---|
| doi | https://doi.org/10.20944/preprints202005.0455.v1 |
| ids.doi | https://doi.org/10.20944/preprints202005.0455.v1 |
| ids.mag | 3031686513 |
| ids.openalex | https://openalex.org/W3031686513 |
| fwci | 0.94470586 |
| type | preprint |
| title | Recognition of Brahmi Words by Using Deep Convolutional Neural Network |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10601 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Handwritten Text Recognition Techniques |
| topics[1].id | https://openalex.org/T10181 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9983000159263611 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Natural Language Processing Techniques |
| topics[2].id | https://openalex.org/T14339 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9804999828338623 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image Processing and 3D Reconstruction |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776145597 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7981339693069458 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q25339462 |
| concepts[0].display_name | Dropout (neural networks) |
| concepts[1].id | https://openalex.org/C81363708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7225195169448853 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[1].display_name | Convolutional neural network |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7096678018569946 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.7087095379829407 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5569641590118408 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C90805587 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48156049847602844 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q10944557 |
| concepts[5].display_name | Word (group theory) |
| concepts[6].id | https://openalex.org/C2780451532 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4616019129753113 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[6].display_name | Task (project management) |
| concepts[7].id | https://openalex.org/C116834253 |
| concepts[7].level | 2 |
| concepts[7].score | 0.43836158514022827 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[7].display_name | Identification (biology) |
| concepts[8].id | https://openalex.org/C204321447 |
| concepts[8].level | 1 |
| concepts[8].score | 0.38614004850387573 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[8].display_name | Natural language processing |
| concepts[9].id | https://openalex.org/C28490314 |
| concepts[9].level | 1 |
| concepts[9].score | 0.33516573905944824 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[9].display_name | Speech recognition |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.20311754941940308 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.13188683986663818 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.07049742341041565 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C59822182 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[13].display_name | Botany |
| concepts[14].id | https://openalex.org/C201995342 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[14].display_name | Systems engineering |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C86803240 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[16].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/dropout |
| keywords[0].score | 0.7981339693069458 |
| keywords[0].display_name | Dropout (neural networks) |
| keywords[1].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[1].score | 0.7225195169448853 |
| keywords[1].display_name | Convolutional neural network |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7096678018569946 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.7087095379829407 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.5569641590118408 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/word |
| keywords[5].score | 0.48156049847602844 |
| keywords[5].display_name | Word (group theory) |
| keywords[6].id | https://openalex.org/keywords/task |
| keywords[6].score | 0.4616019129753113 |
| keywords[6].display_name | Task (project management) |
| keywords[7].id | https://openalex.org/keywords/identification |
| keywords[7].score | 0.43836158514022827 |
| keywords[7].display_name | Identification (biology) |
| keywords[8].id | https://openalex.org/keywords/natural-language-processing |
| keywords[8].score | 0.38614004850387573 |
| keywords[8].display_name | Natural language processing |
| keywords[9].id | https://openalex.org/keywords/speech-recognition |
| keywords[9].score | 0.33516573905944824 |
| keywords[9].display_name | Speech recognition |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.20311754941940308 |
| keywords[10].display_name | Machine learning |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.13188683986663818 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.07049742341041565 |
| keywords[12].display_name | Engineering |
| language | en |
| locations[0].id | doi:10.20944/preprints202005.0455.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.preprints.org/manuscript/202005.0455/v1/download |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202005.0455.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5056781256 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0397-4460 |
| authorships[0].author.display_name | Neha Gautam |
| authorships[0].countries | MY |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I41461413 |
| authorships[0].affiliations[0].raw_affiliation_string | Faculty of Computer Science and Information Technology, University Malaysia Sarawak, Kuching, Malaysia |
| authorships[0].institutions[0].id | https://openalex.org/I41461413 |
| authorships[0].institutions[0].ror | https://ror.org/05b307002 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I41461413 |
| authorships[0].institutions[0].country_code | MY |
| authorships[0].institutions[0].display_name | Universiti Malaysia Sarawak |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Neha Gautam |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Faculty of Computer Science and Information Technology, University Malaysia Sarawak, Kuching, Malaysia |
| authorships[1].author.id | https://openalex.org/A5011096696 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1891-5378 |
| authorships[1].author.display_name | Soo See Chai |
| authorships[1].countries | MY |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I41461413 |
| authorships[1].affiliations[0].raw_affiliation_string | Faculty of Computer Science and Information Technology, University Malaysia Sarawak, Kuching, Malaysia |
| authorships[1].institutions[0].id | https://openalex.org/I41461413 |
| authorships[1].institutions[0].ror | https://ror.org/05b307002 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I41461413 |
| authorships[1].institutions[0].country_code | MY |
| authorships[1].institutions[0].display_name | Universiti Malaysia Sarawak |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Soo See Chai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Faculty of Computer Science and Information Technology, University Malaysia Sarawak, Kuching, Malaysia |
| authorships[2].author.id | https://openalex.org/A5047634868 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jais Jose |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I191972202 |
| authorships[2].affiliations[0].raw_affiliation_string | Amity University, Noida, India |
| authorships[2].institutions[0].id | https://openalex.org/I191972202 |
| authorships[2].institutions[0].ror | https://ror.org/02n9z0v62 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I191972202 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Amity University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jais Jose |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Amity University, Noida, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.preprints.org/manuscript/202005.0455/v1/download |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Recognition of Brahmi Words by Using Deep Convolutional Neural Network |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10601 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Handwritten Text Recognition Techniques |
| related_works | https://openalex.org/W3082178636, https://openalex.org/W1521968289, https://openalex.org/W2782041652, https://openalex.org/W2952088488, https://openalex.org/W2392157706, https://openalex.org/W2599192953, https://openalex.org/W2612657834, https://openalex.org/W2792147139, https://openalex.org/W2514220927, https://openalex.org/W2582745083 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2022 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202005.0455.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.preprints.org/manuscript/202005.0455/v1/download |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202005.0455.v1 |
| primary_location.id | doi:10.20944/preprints202005.0455.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.preprints.org/manuscript/202005.0455/v1/download |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202005.0455.v1 |
| publication_date | 2020-05-28 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2977799862, https://openalex.org/W2800613688, https://openalex.org/W2902230831, https://openalex.org/W2496153910, https://openalex.org/W2508947273, https://openalex.org/W6725325593, https://openalex.org/W6725757144, https://openalex.org/W6752432528, https://openalex.org/W2776496206, https://openalex.org/W2769796463, https://openalex.org/W6684656686, https://openalex.org/W2044943596, https://openalex.org/W2094554668, https://openalex.org/W4231568790, https://openalex.org/W6775371599, https://openalex.org/W2573612273, https://openalex.org/W1978426462, https://openalex.org/W1991589262, https://openalex.org/W3031686513, https://openalex.org/W2736118019, https://openalex.org/W2592852541, https://openalex.org/W2282186389, https://openalex.org/W2166494748, https://openalex.org/W2474199164, https://openalex.org/W2793602411, https://openalex.org/W2072369715, https://openalex.org/W2099878067, https://openalex.org/W1034159276, https://openalex.org/W2912934387, https://openalex.org/W2613140201, https://openalex.org/W6776300201, https://openalex.org/W2112796928, https://openalex.org/W1904365287, https://openalex.org/W2958246001, https://openalex.org/W755956977, https://openalex.org/W2125792038, https://openalex.org/W2170118542, https://openalex.org/W2510432847, https://openalex.org/W1968926911, https://openalex.org/W2805767325, https://openalex.org/W3014698563, https://openalex.org/W2508392826, https://openalex.org/W2051044158, https://openalex.org/W621405985, https://openalex.org/W2101926813, https://openalex.org/W3015142830, https://openalex.org/W4300582455 |
| referenced_works_count | 47 |
| abstract_inverted_index.a | 56, 63 |
| abstract_inverted_index.by | 91 |
| abstract_inverted_index.in | 4, 21, 107 |
| abstract_inverted_index.is | 16, 97 |
| abstract_inverted_index.of | 19, 28, 39, 65, 76 |
| abstract_inverted_index.on | 69, 82 |
| abstract_inverted_index.to | 47 |
| abstract_inverted_index.CNN | 92 |
| abstract_inverted_index.The | 73 |
| abstract_inverted_index.and | 32, 62 |
| abstract_inverted_index.are | 67 |
| abstract_inverted_index.for | 58, 110 |
| abstract_inverted_index.has | 2, 12 |
| abstract_inverted_index.not | 13 |
| abstract_inverted_index.one | 9 |
| abstract_inverted_index.the | 17, 22, 26, 37, 40, 49, 99, 104, 108, 111 |
| abstract_inverted_index.use | 38 |
| abstract_inverted_index.was | 79 |
| abstract_inverted_index.yet | 14 |
| abstract_inverted_index.DCNN | 57 |
| abstract_inverted_index.This | 34, 52 |
| abstract_inverted_index.also | 54 |
| abstract_inverted_index.best | 100 |
| abstract_inverted_index.deep | 41 |
| abstract_inverted_index.made | 3 |
| abstract_inverted_index.ones | 105 |
| abstract_inverted_index.rate | 90 |
| abstract_inverted_index.same | 112 |
| abstract_inverted_index.that | 11 |
| abstract_inverted_index.this | 77 |
| abstract_inverted_index.with | 45, 93, 103 |
| abstract_inverted_index.word | 60 |
| abstract_inverted_index.among | 98 |
| abstract_inverted_index.image | 85 |
| abstract_inverted_index.study | 35, 53 |
| abstract_inverted_index.task. | 113 |
| abstract_inverted_index.which | 96 |
| abstract_inverted_index.while | 101 |
| abstract_inverted_index.word. | 33 |
| abstract_inverted_index.words | 20 |
| abstract_inverted_index.92.47% | 88 |
| abstract_inverted_index.Brahmi | 23, 50, 59, 71, 84 |
| abstract_inverted_index.method | 78 |
| abstract_inverted_index.neural | 43 |
| abstract_inverted_index.series | 64 |
| abstract_inverted_index.tested | 81 |
| abstract_inverted_index.words. | 51 |
| abstract_inverted_index.dropout | 46, 94 |
| abstract_inverted_index.network | 44 |
| abstract_inverted_index.pattern | 5 |
| abstract_inverted_index.script, | 24 |
| abstract_inverted_index.However, | 8 |
| abstract_inverted_index.compound | 30 |
| abstract_inverted_index.dataset. | 72 |
| abstract_inverted_index.obstacle | 10 |
| abstract_inverted_index.overcome | 15 |
| abstract_inverted_index.progress | 1 |
| abstract_inverted_index.proposed | 55 |
| abstract_inverted_index.proposes | 36 |
| abstract_inverted_index.reported | 106 |
| abstract_inverted_index.standard | 70 |
| abstract_inverted_index.achieving | 87 |
| abstract_inverted_index.comparing | 102 |
| abstract_inverted_index.database, | 86 |
| abstract_inverted_index.operation | 75 |
| abstract_inverted_index.performed | 68 |
| abstract_inverted_index.practical | 74 |
| abstract_inverted_index.recognize | 48 |
| abstract_inverted_index.accessible | 83 |
| abstract_inverted_index.literature | 109 |
| abstract_inverted_index.Significant | 0 |
| abstract_inverted_index.characters, | 29, 31 |
| abstract_inverted_index.experiments | 66 |
| abstract_inverted_index.recognition | 6, 18, 61, 89 |
| abstract_inverted_index.technology. | 7 |
| abstract_inverted_index.respectively | 95 |
| abstract_inverted_index.specifically | 25 |
| abstract_inverted_index.convolutional | 42 |
| abstract_inverted_index.identification | 27 |
| abstract_inverted_index.systematically | 80 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5056781256 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I41461413 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6399999856948853 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.76815026 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |