Recognition of MI-EEG signals using extended-LSR-based inductive transfer learning Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.3389/fninf.2025.1559335
Introduction Motor imagery electroencephalographic (MI-EEG) signal recognition is used in various brain–computer interface (BCI) systems. In most existing BCI systems, this identification relies on classification algorithms. However, generally, a large amount of subject-specific labeled training data is required to reliably calibrate the classification algorithm for each new subject. To address this challenge, an effective strategy is to integrate transfer learning into the construction of intelligent models, allowing knowledge to be transferred from the source domain to enhance the performance of models trained in the target domain. Although transfer learning has been implemented in EEG signal recognition, many existing methods are designed specifically for certain intelligent models, limiting their application and generalization. Methods To broaden application and generalization, an extended-LSR-based inductive transfer learning method is proposed to facilitate transfer learning across various classical intelligent models, including neural networks, Takagi-SugenoKang (TSK) fuzzy systems, and kernel methods. Results and discussion The proposed method not only promotes the transfer of valuable knowledge from the source domain to improve learning performance in the target domain when target domain training data are insufficient but also enhances application and generalization by incorporating multiple classic base models. The experimental results demonstrate the effectiveness of the proposed method in MI-EEG signal recognition.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3389/fninf.2025.1559335
- https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2025.1559335/pdf
- OA Status
- gold
- References
- 52
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4409308717
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4409308717Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3389/fninf.2025.1559335Digital Object Identifier
- Title
-
Recognition of MI-EEG signals using extended-LSR-based inductive transfer learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-04-09Full publication date if available
- Authors
-
Zhibin Jiang, Keli Hu, Jia Qu, Zekang Bian, Donghua Yu, Jie ZhouList of authors in order
- Landing page
-
https://doi.org/10.3389/fninf.2025.1559335Publisher landing page
- PDF URL
-
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2025.1559335/pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2025.1559335/pdfDirect OA link when available
- Concepts
-
Transfer of learning, Computer science, Electroencephalography, Pattern recognition (psychology), Speech recognition, Artificial intelligence, Psychology, NeuroscienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
52Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4409308717 |
|---|---|
| doi | https://doi.org/10.3389/fninf.2025.1559335 |
| ids.doi | https://doi.org/10.3389/fninf.2025.1559335 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/40270987 |
| ids.openalex | https://openalex.org/W4409308717 |
| fwci | 0.0 |
| type | article |
| title | Recognition of MI-EEG signals using extended-LSR-based inductive transfer learning |
| biblio.issue | |
| biblio.volume | 19 |
| biblio.last_page | 1559335 |
| biblio.first_page | 1559335 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T11447 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.996399998664856 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Blind Source Separation Techniques |
| topics[2].id | https://openalex.org/T10320 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.995199978351593 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Neural Networks and Applications |
| is_xpac | False |
| apc_list.value | 2950 |
| apc_list.currency | USD |
| apc_list.value_usd | 2950 |
| apc_paid.value | 2950 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2950 |
| concepts[0].id | https://openalex.org/C150899416 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6376122832298279 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[0].display_name | Transfer of learning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6262931823730469 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C522805319 |
| concepts[2].level | 2 |
| concepts[2].score | 0.548845648765564 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[2].display_name | Electroencephalography |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.48290467262268066 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C28490314 |
| concepts[4].level | 1 |
| concepts[4].score | 0.46699681878089905 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[4].display_name | Speech recognition |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.46673497557640076 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.16497132182121277 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C169760540 |
| concepts[7].level | 1 |
| concepts[7].score | 0.11288315057754517 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q207011 |
| concepts[7].display_name | Neuroscience |
| keywords[0].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[0].score | 0.6376122832298279 |
| keywords[0].display_name | Transfer of learning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6262931823730469 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/electroencephalography |
| keywords[2].score | 0.548845648765564 |
| keywords[2].display_name | Electroencephalography |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.48290467262268066 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/speech-recognition |
| keywords[4].score | 0.46699681878089905 |
| keywords[4].display_name | Speech recognition |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.46673497557640076 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.16497132182121277 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/neuroscience |
| keywords[7].score | 0.11288315057754517 |
| keywords[7].display_name | Neuroscience |
| language | en |
| locations[0].id | doi:10.3389/fninf.2025.1559335 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S179816892 |
| locations[0].source.issn | 1662-5196 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1662-5196 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Frontiers in Neuroinformatics |
| locations[0].source.host_organization | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_name | Frontiers Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320527 |
| locations[0].source.host_organization_lineage_names | Frontiers Media |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2025.1559335/pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Neuroinformatics |
| locations[0].landing_page_url | https://doi.org/10.3389/fninf.2025.1559335 |
| locations[1].id | pmid:40270987 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Frontiers in neuroinformatics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/40270987 |
| locations[2].id | pmh:oai:doaj.org/article:893202873baa4b1386eaceea4630a0bf |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Frontiers in Neuroinformatics, Vol 19 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/893202873baa4b1386eaceea4630a0bf |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:12014663 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Front Neuroinform |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12014663 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5059722188 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8580-7609 |
| authorships[0].author.display_name | Zhibin Jiang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I192209268 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Artificial Intelligence, Shaoxing University, Shaoxing, China. |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I192209268 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Computer Science and Engineering, Shaoxing University, Shaoxing, China. |
| authorships[0].institutions[0].id | https://openalex.org/I192209268 |
| authorships[0].institutions[0].ror | https://ror.org/0435tej63 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I192209268 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Shaoxing University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhibin Jiang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, Shaoxing University, Shaoxing, China., Institute of Artificial Intelligence, Shaoxing University, Shaoxing, China. |
| authorships[1].author.id | https://openalex.org/A5064423778 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5628-7640 |
| authorships[1].author.display_name | Keli Hu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[1].affiliations[0].raw_affiliation_string | Information Technology R&D Innovation Center of Peking University, Shaoxing, China. |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I192209268 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Computer Science and Engineering, Shaoxing University, Shaoxing, China. |
| authorships[1].institutions[0].id | https://openalex.org/I20231570 |
| authorships[1].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Peking University |
| authorships[1].institutions[1].id | https://openalex.org/I192209268 |
| authorships[1].institutions[1].ror | https://ror.org/0435tej63 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I192209268 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Shaoxing University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Keli Hu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, Shaoxing University, Shaoxing, China., Information Technology R&D Innovation Center of Peking University, Shaoxing, China. |
| authorships[2].author.id | https://openalex.org/A5001448777 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0595-3690 |
| authorships[2].author.display_name | Jia Qu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210153482 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China. |
| authorships[2].institutions[0].id | https://openalex.org/I4210153482 |
| authorships[2].institutions[0].ror | https://ror.org/04ymgwq66 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210153482 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Changzhou University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jia Qu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, China. |
| authorships[3].author.id | https://openalex.org/A5061447455 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0512-9247 |
| authorships[3].author.display_name | Zekang Bian |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I111599522 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of AI & Computer Science, Jiangnan University, Wuxi, China. |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Taihu Jiangsu Key Construction Lab of IoT Application Technologies, Wuxi, China. |
| authorships[3].institutions[0].id | https://openalex.org/I111599522 |
| authorships[3].institutions[0].ror | https://ror.org/04mkzax54 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I111599522 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Jiangnan University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zekang Bian |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of AI & Computer Science, Jiangnan University, Wuxi, China., Department of Taihu Jiangsu Key Construction Lab of IoT Application Technologies, Wuxi, China. |
| authorships[4].author.id | https://openalex.org/A5110768710 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0464-9205 |
| authorships[4].author.display_name | Donghua Yu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I192209268 |
| authorships[4].affiliations[0].raw_affiliation_string | Institute of Artificial Intelligence, Shaoxing University, Shaoxing, China. |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I192209268 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Computer Science and Engineering, Shaoxing University, Shaoxing, China. |
| authorships[4].institutions[0].id | https://openalex.org/I192209268 |
| authorships[4].institutions[0].ror | https://ror.org/0435tej63 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I192209268 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Shaoxing University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Donghua Yu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science and Engineering, Shaoxing University, Shaoxing, China., Institute of Artificial Intelligence, Shaoxing University, Shaoxing, China. |
| authorships[5].author.id | https://openalex.org/A5100620306 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7701-234X |
| authorships[5].author.display_name | Jie Zhou |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I192209268 |
| authorships[5].affiliations[0].raw_affiliation_string | Institute of Artificial Intelligence, Shaoxing University, Shaoxing, China. |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I192209268 |
| authorships[5].affiliations[1].raw_affiliation_string | Department of Computer Science and Engineering, Shaoxing University, Shaoxing, China. |
| authorships[5].institutions[0].id | https://openalex.org/I192209268 |
| authorships[5].institutions[0].ror | https://ror.org/0435tej63 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I192209268 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Shaoxing University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Jie Zhou |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Science and Engineering, Shaoxing University, Shaoxing, China., Institute of Artificial Intelligence, Shaoxing University, Shaoxing, China. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2025.1559335/pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Recognition of MI-EEG signals using extended-LSR-based inductive transfer learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W2922348724, https://openalex.org/W200322357, https://openalex.org/W2130428257, https://openalex.org/W4308951944, https://openalex.org/W2057366091, https://openalex.org/W4312960290, https://openalex.org/W2049513647, https://openalex.org/W2988848585, https://openalex.org/W2033914206, https://openalex.org/W2042327336 |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3389/fninf.2025.1559335 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S179816892 |
| best_oa_location.source.issn | 1662-5196 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1662-5196 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Frontiers in Neuroinformatics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_name | Frontiers Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| best_oa_location.source.host_organization_lineage_names | Frontiers Media |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2025.1559335/pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Neuroinformatics |
| best_oa_location.landing_page_url | https://doi.org/10.3389/fninf.2025.1559335 |
| primary_location.id | doi:10.3389/fninf.2025.1559335 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S179816892 |
| primary_location.source.issn | 1662-5196 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1662-5196 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Frontiers in Neuroinformatics |
| primary_location.source.host_organization | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_name | Frontiers Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320527 |
| primary_location.source.host_organization_lineage_names | Frontiers Media |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.frontiersin.org/journals/neuroinformatics/articles/10.3389/fninf.2025.1559335/pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Neuroinformatics |
| primary_location.landing_page_url | https://doi.org/10.3389/fninf.2025.1559335 |
| publication_date | 2025-04-09 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W3132743969, https://openalex.org/W6671359572, https://openalex.org/W2148593155, https://openalex.org/W6676348322, https://openalex.org/W4388104352, https://openalex.org/W2026157446, https://openalex.org/W2101629643, https://openalex.org/W2122111042, https://openalex.org/W6678582013, https://openalex.org/W4401879161, https://openalex.org/W2001619934, https://openalex.org/W3088043725, https://openalex.org/W3094227425, https://openalex.org/W2132240828, https://openalex.org/W4389980859, https://openalex.org/W2141695047, https://openalex.org/W2921318792, https://openalex.org/W3153643636, https://openalex.org/W6633301734, https://openalex.org/W4200092926, https://openalex.org/W2926366943, https://openalex.org/W2152119085, https://openalex.org/W4210278126, https://openalex.org/W2097486709, https://openalex.org/W2115403315, https://openalex.org/W2165698076, https://openalex.org/W2156832349, https://openalex.org/W4386068068, https://openalex.org/W4386139438, https://openalex.org/W4296473128, https://openalex.org/W4327521640, https://openalex.org/W6637962894, https://openalex.org/W2119802217, https://openalex.org/W4389144589, https://openalex.org/W4391791406, https://openalex.org/W3090425814, https://openalex.org/W2289208053, https://openalex.org/W2099971677, https://openalex.org/W2800380319, https://openalex.org/W4386135970, https://openalex.org/W4399555967, https://openalex.org/W4311543568, https://openalex.org/W4205139417, https://openalex.org/W6762404521, https://openalex.org/W2122838776, https://openalex.org/W2987861506, https://openalex.org/W3173713405, https://openalex.org/W4226462449, https://openalex.org/W2083380021, https://openalex.org/W1559060276, https://openalex.org/W2107968230, https://openalex.org/W1755117326 |
| referenced_works_count | 52 |
| abstract_inverted_index.a | 28 |
| abstract_inverted_index.In | 15 |
| abstract_inverted_index.To | 48, 112 |
| abstract_inverted_index.an | 52, 117 |
| abstract_inverted_index.be | 69 |
| abstract_inverted_index.by | 183 |
| abstract_inverted_index.in | 9, 82, 92, 166, 199 |
| abstract_inverted_index.is | 7, 36, 55, 123 |
| abstract_inverted_index.of | 31, 63, 79, 155, 195 |
| abstract_inverted_index.on | 23 |
| abstract_inverted_index.to | 38, 56, 68, 75, 125, 162 |
| abstract_inverted_index.BCI | 18 |
| abstract_inverted_index.EEG | 93 |
| abstract_inverted_index.The | 147, 189 |
| abstract_inverted_index.and | 109, 115, 141, 145, 181 |
| abstract_inverted_index.are | 99, 175 |
| abstract_inverted_index.but | 177 |
| abstract_inverted_index.for | 44, 102 |
| abstract_inverted_index.has | 89 |
| abstract_inverted_index.new | 46 |
| abstract_inverted_index.not | 150 |
| abstract_inverted_index.the | 41, 61, 72, 77, 83, 153, 159, 167, 193, 196 |
| abstract_inverted_index.also | 178 |
| abstract_inverted_index.base | 187 |
| abstract_inverted_index.been | 90 |
| abstract_inverted_index.data | 35, 174 |
| abstract_inverted_index.each | 45 |
| abstract_inverted_index.from | 71, 158 |
| abstract_inverted_index.into | 60 |
| abstract_inverted_index.many | 96 |
| abstract_inverted_index.most | 16 |
| abstract_inverted_index.only | 151 |
| abstract_inverted_index.this | 20, 50 |
| abstract_inverted_index.used | 8 |
| abstract_inverted_index.when | 170 |
| abstract_inverted_index.(BCI) | 13 |
| abstract_inverted_index.(TSK) | 138 |
| abstract_inverted_index.Motor | 1 |
| abstract_inverted_index.fuzzy | 139 |
| abstract_inverted_index.large | 29 |
| abstract_inverted_index.their | 107 |
| abstract_inverted_index.MI-EEG | 200 |
| abstract_inverted_index.across | 129 |
| abstract_inverted_index.amount | 30 |
| abstract_inverted_index.domain | 74, 161, 169, 172 |
| abstract_inverted_index.kernel | 142 |
| abstract_inverted_index.method | 122, 149, 198 |
| abstract_inverted_index.models | 80 |
| abstract_inverted_index.neural | 135 |
| abstract_inverted_index.relies | 22 |
| abstract_inverted_index.signal | 5, 94, 201 |
| abstract_inverted_index.source | 73, 160 |
| abstract_inverted_index.target | 84, 168, 171 |
| abstract_inverted_index.Methods | 111 |
| abstract_inverted_index.Results | 144 |
| abstract_inverted_index.address | 49 |
| abstract_inverted_index.broaden | 113 |
| abstract_inverted_index.certain | 103 |
| abstract_inverted_index.classic | 186 |
| abstract_inverted_index.domain. | 85 |
| abstract_inverted_index.enhance | 76 |
| abstract_inverted_index.imagery | 2 |
| abstract_inverted_index.improve | 163 |
| abstract_inverted_index.labeled | 33 |
| abstract_inverted_index.methods | 98 |
| abstract_inverted_index.models, | 65, 105, 133 |
| abstract_inverted_index.models. | 188 |
| abstract_inverted_index.results | 191 |
| abstract_inverted_index.trained | 81 |
| abstract_inverted_index.various | 10, 130 |
| abstract_inverted_index.(MI-EEG) | 4 |
| abstract_inverted_index.Although | 86 |
| abstract_inverted_index.However, | 26 |
| abstract_inverted_index.allowing | 66 |
| abstract_inverted_index.designed | 100 |
| abstract_inverted_index.enhances | 179 |
| abstract_inverted_index.existing | 17, 97 |
| abstract_inverted_index.learning | 59, 88, 121, 128, 164 |
| abstract_inverted_index.limiting | 106 |
| abstract_inverted_index.methods. | 143 |
| abstract_inverted_index.multiple | 185 |
| abstract_inverted_index.promotes | 152 |
| abstract_inverted_index.proposed | 124, 148, 197 |
| abstract_inverted_index.reliably | 39 |
| abstract_inverted_index.required | 37 |
| abstract_inverted_index.strategy | 54 |
| abstract_inverted_index.subject. | 47 |
| abstract_inverted_index.systems, | 19, 140 |
| abstract_inverted_index.systems. | 14 |
| abstract_inverted_index.training | 34, 173 |
| abstract_inverted_index.transfer | 58, 87, 120, 127, 154 |
| abstract_inverted_index.valuable | 156 |
| abstract_inverted_index.algorithm | 43 |
| abstract_inverted_index.calibrate | 40 |
| abstract_inverted_index.classical | 131 |
| abstract_inverted_index.effective | 53 |
| abstract_inverted_index.including | 134 |
| abstract_inverted_index.inductive | 119 |
| abstract_inverted_index.integrate | 57 |
| abstract_inverted_index.interface | 12 |
| abstract_inverted_index.knowledge | 67, 157 |
| abstract_inverted_index.networks, | 136 |
| abstract_inverted_index.challenge, | 51 |
| abstract_inverted_index.discussion | 146 |
| abstract_inverted_index.facilitate | 126 |
| abstract_inverted_index.generally, | 27 |
| abstract_inverted_index.algorithms. | 25 |
| abstract_inverted_index.application | 108, 114, 180 |
| abstract_inverted_index.demonstrate | 192 |
| abstract_inverted_index.implemented | 91 |
| abstract_inverted_index.intelligent | 64, 104, 132 |
| abstract_inverted_index.performance | 78, 165 |
| abstract_inverted_index.recognition | 6 |
| abstract_inverted_index.transferred | 70 |
| abstract_inverted_index.Introduction | 0 |
| abstract_inverted_index.construction | 62 |
| abstract_inverted_index.experimental | 190 |
| abstract_inverted_index.insufficient | 176 |
| abstract_inverted_index.recognition, | 95 |
| abstract_inverted_index.recognition. | 202 |
| abstract_inverted_index.specifically | 101 |
| abstract_inverted_index.effectiveness | 194 |
| abstract_inverted_index.incorporating | 184 |
| abstract_inverted_index.classification | 24, 42 |
| abstract_inverted_index.generalization | 182 |
| abstract_inverted_index.identification | 21 |
| abstract_inverted_index.generalization, | 116 |
| abstract_inverted_index.generalization. | 110 |
| abstract_inverted_index.brain–computer | 11 |
| abstract_inverted_index.subject-specific | 32 |
| abstract_inverted_index.Takagi-SugenoKang | 137 |
| abstract_inverted_index.extended-LSR-based | 118 |
| abstract_inverted_index.electroencephalographic | 3 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.12460911 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |