Reconstructing Noisy Gene Regulation Dynamics Using Extrinsic-Noise-Driven Neural Stochastic Differential Equations Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2503.09007
Proper regulation of cell signaling and gene expression is crucial for maintaining cellular function, development, and adaptation to environmental changes. Reaction dynamics in cell populations is often noisy because of (i) inherent stochasticity of intracellular biochemical reactions (``intrinsic noise'') and (ii) heterogeneity of cellular states across different cells that are influenced by external factors (``extrinsic noise''). In this work, we introduce an extrinsic-noise-driven neural stochastic differential equation (END-nSDE) framework that utilizes the Wasserstein distance to accurately reconstruct SDEs from trajectory data from a heterogeneous population of cells (extrinsic noise). We demonstrate the effectiveness of our approach using both simulated and experimental data from three different systems in cell biology: (i) circadian rhythms, (ii) RPA-DNA binding dynamics, and (iii) NF$κ$B signaling process. Our END-nSDE reconstruction method can model how cellular heterogeneity (extrinsic noise) modulates reaction dynamics in the presence of intrinsic noise. It also outperforms existing time-series analysis methods such as recurrent neural networks (RNNs) and long short-term memory networks (LSTMs). By inferring cellular heterogeneities from data, our END-nSDE reconstruction method can reproduce noisy dynamics observed in experiments. In summary, the reconstruction method we propose offers a useful surrogate modeling approach for complex biophysical processes, where high-fidelity mechanistic models may be impractical.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.48550/arxiv.2503.09007
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415101313
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415101313Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2503.09007Digital Object Identifier
- Title
-
Reconstructing Noisy Gene Regulation Dynamics Using Extrinsic-Noise-Driven Neural Stochastic Differential EquationsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-12Full publication date if available
- Authors
-
Jiancheng Zhang, Xiangting Li, Xiaolu Guo, Z. Y. You, Lucas Böttcher, Alex Mogilner, A. C. Abusleme Hoffman, Tom Chou, Mingtao XiaList of authors in order
- Landing page
-
https://doi.org/10.48550/arxiv.2503.09007Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.48550/arxiv.2503.09007Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415101313 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2503.09007 |
| ids.doi | https://doi.org/10.48550/arxiv.2503.09007 |
| ids.openalex | https://openalex.org/W4415101313 |
| fwci | |
| type | preprint |
| title | Reconstructing Noisy Gene Regulation Dynamics Using Extrinsic-Noise-Driven Neural Stochastic Differential Equations |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10621 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9613000154495239 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1312 |
| topics[0].subfield.display_name | Molecular Biology |
| topics[0].display_name | Gene Regulatory Network Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.48550/arxiv.2503.09007 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.48550/arxiv.2503.09007 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5031980412 |
| authorships[0].author.orcid | https://orcid.org/0009-0006-0460-943X |
| authorships[0].author.display_name | Jiancheng Zhang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhang, Jiancheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5032528993 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5238-7364 |
| authorships[1].author.display_name | Xiangting Li |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Li, Xiangting |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5069099352 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6273-0450 |
| authorships[2].author.display_name | Xiaolu Guo |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Guo, Xiaolu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5038608254 |
| authorships[3].author.orcid | https://orcid.org/0009-0008-7080-6858 |
| authorships[3].author.display_name | Z. Y. You |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | You, Zhaoyi |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5088737112 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-1700-1897 |
| authorships[4].author.display_name | Lucas Böttcher |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Böttcher, Lucas |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5079796040 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-9310-3812 |
| authorships[5].author.display_name | Alex Mogilner |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Mogilner, Alex |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5056881719 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0762-7204 |
| authorships[6].author.display_name | A. C. Abusleme Hoffman |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Hoffman, Alexander |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5044310323 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-0785-6349 |
| authorships[7].author.display_name | Tom Chou |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Chou, Tom |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5088069608 |
| authorships[8].author.orcid | https://orcid.org/0000-0002-2116-4712 |
| authorships[8].author.display_name | Mingtao Xia |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Xia, Mingtao |
| authorships[8].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.48550/arxiv.2503.09007 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-13T00:00:00 |
| display_name | Reconstructing Noisy Gene Regulation Dynamics Using Extrinsic-Noise-Driven Neural Stochastic Differential Equations |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10621 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9613000154495239 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1312 |
| primary_topic.subfield.display_name | Molecular Biology |
| primary_topic.display_name | Gene Regulatory Network Analysis |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.48550/arxiv.2503.09007 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.48550/arxiv.2503.09007 |
| primary_location.id | doi:10.48550/arxiv.2503.09007 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.48550/arxiv.2503.09007 |
| publication_date | 2025-03-12 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 82, 185 |
| abstract_inverted_index.By | 160 |
| abstract_inverted_index.In | 56, 177 |
| abstract_inverted_index.It | 141 |
| abstract_inverted_index.We | 89 |
| abstract_inverted_index.an | 61 |
| abstract_inverted_index.as | 149 |
| abstract_inverted_index.be | 199 |
| abstract_inverted_index.by | 51 |
| abstract_inverted_index.in | 22, 106, 135, 175 |
| abstract_inverted_index.is | 8, 25 |
| abstract_inverted_index.of | 2, 29, 33, 42, 85, 93, 138 |
| abstract_inverted_index.to | 17, 74 |
| abstract_inverted_index.we | 59, 182 |
| abstract_inverted_index.(i) | 30, 109 |
| abstract_inverted_index.Our | 121 |
| abstract_inverted_index.and | 5, 15, 39, 99, 116, 154 |
| abstract_inverted_index.are | 49 |
| abstract_inverted_index.can | 125, 170 |
| abstract_inverted_index.for | 10, 190 |
| abstract_inverted_index.how | 127 |
| abstract_inverted_index.may | 198 |
| abstract_inverted_index.our | 94, 166 |
| abstract_inverted_index.the | 71, 91, 136, 179 |
| abstract_inverted_index.(ii) | 40, 112 |
| abstract_inverted_index.SDEs | 77 |
| abstract_inverted_index.also | 142 |
| abstract_inverted_index.both | 97 |
| abstract_inverted_index.cell | 3, 23, 107 |
| abstract_inverted_index.data | 80, 101 |
| abstract_inverted_index.from | 78, 81, 102, 164 |
| abstract_inverted_index.gene | 6 |
| abstract_inverted_index.long | 155 |
| abstract_inverted_index.such | 148 |
| abstract_inverted_index.that | 48, 69 |
| abstract_inverted_index.this | 57 |
| abstract_inverted_index.(iii) | 117 |
| abstract_inverted_index.cells | 47, 86 |
| abstract_inverted_index.data, | 165 |
| abstract_inverted_index.model | 126 |
| abstract_inverted_index.noisy | 27, 172 |
| abstract_inverted_index.often | 26 |
| abstract_inverted_index.three | 103 |
| abstract_inverted_index.using | 96 |
| abstract_inverted_index.where | 194 |
| abstract_inverted_index.work, | 58 |
| abstract_inverted_index.(RNNs) | 153 |
| abstract_inverted_index.Proper | 0 |
| abstract_inverted_index.across | 45 |
| abstract_inverted_index.memory | 157 |
| abstract_inverted_index.method | 124, 169, 181 |
| abstract_inverted_index.models | 197 |
| abstract_inverted_index.neural | 63, 151 |
| abstract_inverted_index.noise) | 131 |
| abstract_inverted_index.noise. | 140 |
| abstract_inverted_index.offers | 184 |
| abstract_inverted_index.states | 44 |
| abstract_inverted_index.useful | 186 |
| abstract_inverted_index.NF$κ$B | 118 |
| abstract_inverted_index.RPA-DNA | 113 |
| abstract_inverted_index.because | 28 |
| abstract_inverted_index.binding | 114 |
| abstract_inverted_index.complex | 191 |
| abstract_inverted_index.crucial | 9 |
| abstract_inverted_index.factors | 53 |
| abstract_inverted_index.methods | 147 |
| abstract_inverted_index.noise). | 88 |
| abstract_inverted_index.propose | 183 |
| abstract_inverted_index.systems | 105 |
| abstract_inverted_index.(LSTMs). | 159 |
| abstract_inverted_index.END-nSDE | 122, 167 |
| abstract_inverted_index.Reaction | 20 |
| abstract_inverted_index.analysis | 146 |
| abstract_inverted_index.approach | 95, 189 |
| abstract_inverted_index.biology: | 108 |
| abstract_inverted_index.cellular | 12, 43, 128, 162 |
| abstract_inverted_index.changes. | 19 |
| abstract_inverted_index.distance | 73 |
| abstract_inverted_index.dynamics | 21, 134, 173 |
| abstract_inverted_index.equation | 66 |
| abstract_inverted_index.existing | 144 |
| abstract_inverted_index.external | 52 |
| abstract_inverted_index.inherent | 31 |
| abstract_inverted_index.modeling | 188 |
| abstract_inverted_index.networks | 152, 158 |
| abstract_inverted_index.noise'') | 38 |
| abstract_inverted_index.observed | 174 |
| abstract_inverted_index.presence | 137 |
| abstract_inverted_index.process. | 120 |
| abstract_inverted_index.reaction | 133 |
| abstract_inverted_index.rhythms, | 111 |
| abstract_inverted_index.summary, | 178 |
| abstract_inverted_index.utilizes | 70 |
| abstract_inverted_index.circadian | 110 |
| abstract_inverted_index.different | 46, 104 |
| abstract_inverted_index.dynamics, | 115 |
| abstract_inverted_index.framework | 68 |
| abstract_inverted_index.function, | 13 |
| abstract_inverted_index.inferring | 161 |
| abstract_inverted_index.intrinsic | 139 |
| abstract_inverted_index.introduce | 60 |
| abstract_inverted_index.modulates | 132 |
| abstract_inverted_index.noise''). | 55 |
| abstract_inverted_index.reactions | 36 |
| abstract_inverted_index.recurrent | 150 |
| abstract_inverted_index.reproduce | 171 |
| abstract_inverted_index.signaling | 4, 119 |
| abstract_inverted_index.simulated | 98 |
| abstract_inverted_index.surrogate | 187 |
| abstract_inverted_index.(END-nSDE) | 67 |
| abstract_inverted_index.(extrinsic | 87, 130 |
| abstract_inverted_index.accurately | 75 |
| abstract_inverted_index.adaptation | 16 |
| abstract_inverted_index.expression | 7 |
| abstract_inverted_index.influenced | 50 |
| abstract_inverted_index.population | 84 |
| abstract_inverted_index.processes, | 193 |
| abstract_inverted_index.regulation | 1 |
| abstract_inverted_index.short-term | 156 |
| abstract_inverted_index.stochastic | 64 |
| abstract_inverted_index.trajectory | 79 |
| abstract_inverted_index.Wasserstein | 72 |
| abstract_inverted_index.biochemical | 35 |
| abstract_inverted_index.biophysical | 192 |
| abstract_inverted_index.demonstrate | 90 |
| abstract_inverted_index.maintaining | 11 |
| abstract_inverted_index.mechanistic | 196 |
| abstract_inverted_index.outperforms | 143 |
| abstract_inverted_index.populations | 24 |
| abstract_inverted_index.reconstruct | 76 |
| abstract_inverted_index.time-series | 145 |
| abstract_inverted_index.(``extrinsic | 54 |
| abstract_inverted_index.(``intrinsic | 37 |
| abstract_inverted_index.development, | 14 |
| abstract_inverted_index.differential | 65 |
| abstract_inverted_index.experimental | 100 |
| abstract_inverted_index.experiments. | 176 |
| abstract_inverted_index.impractical. | 200 |
| abstract_inverted_index.effectiveness | 92 |
| abstract_inverted_index.environmental | 18 |
| abstract_inverted_index.heterogeneity | 41, 129 |
| abstract_inverted_index.heterogeneous | 83 |
| abstract_inverted_index.high-fidelity | 195 |
| abstract_inverted_index.intracellular | 34 |
| abstract_inverted_index.stochasticity | 32 |
| abstract_inverted_index.reconstruction | 123, 168, 180 |
| abstract_inverted_index.heterogeneities | 163 |
| abstract_inverted_index.extrinsic-noise-driven | 62 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile |