Reconstruction Technology of Flexible Structure Shape Based on FBG Sensor Array and Deep Learning Algorithm Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.32604/sdhm.2022.018202
A structural displacement field reconstruction method is proposed to aim at the problems of deformation monitoring and displacement field reconstruction of flexible plate-like structures in the aerospace field. This method combines the deep neural network model of the cross-layer connection structure with the fiber grating sensor network. This paper first introduces the principle of strain detection of fiber grating sensor, studies the mapping relationship between strain and displacement, and proposes a strain-displacement conversion model based on an improved neural network. Then the intelligent structure deformation monitoring system is built. By controlling the stepping distance of the motor to produce different deformations of the plate structure, the strain information and real displacement information are obtained based on the high-density fiber grating sensor network and the dial indicator array. Finally, based on the deformation prediction model obtained by training, the displacement field reconstruction of the structure under different deformation states is realized. Experimental results show that the mean absolute error of the deformation of the measuring points obtained by this method is less than 0.032 mm. This method is feasible in theory and practice and can be applied to the deformation monitoring of aerospace vehicle structures.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.32604/sdhm.2022.018202
- OA Status
- diamond
- Cited By
- 4
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4205313231
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4205313231Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.32604/sdhm.2022.018202Digital Object Identifier
- Title
-
Reconstruction Technology of Flexible Structure Shape Based on FBG Sensor Array and Deep Learning AlgorithmWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Kelong Huang, Jie Yan, Lei Zhang, Faye Zhang, Mingshun Jiang, Qingmei SuiList of authors in order
- Landing page
-
https://doi.org/10.32604/sdhm.2022.018202Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.32604/sdhm.2022.018202Direct OA link when available
- Concepts
-
Displacement (psychology), Deformation (meteorology), Structural health monitoring, Displacement field, Artificial neural network, Fiber Bragg grating, Deformation monitoring, Field (mathematics), Grating, Computer science, Algorithm, Aerospace, Artificial intelligence, Acoustics, Structural engineering, Engineering, Materials science, Optical fiber, Optics, Finite element method, Mathematics, Physics, Telecommunications, Aerospace engineering, Psychology, Psychotherapist, Pure mathematics, Composite materialTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 4Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4205313231 |
|---|---|
| doi | https://doi.org/10.32604/sdhm.2022.018202 |
| ids.doi | https://doi.org/10.32604/sdhm.2022.018202 |
| ids.openalex | https://openalex.org/W4205313231 |
| fwci | 0.43058688 |
| type | article |
| title | Reconstruction Technology of Flexible Structure Shape Based on FBG Sensor Array and Deep Learning Algorithm |
| biblio.issue | 2 |
| biblio.volume | 16 |
| biblio.last_page | 194 |
| biblio.first_page | 179 |
| topics[0].id | https://openalex.org/T10205 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9959999918937683 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced Fiber Optic Sensors |
| topics[1].id | https://openalex.org/T10534 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9865999817848206 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Structural Health Monitoring Techniques |
| topics[2].id | https://openalex.org/T10638 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9686999917030334 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Optical measurement and interference techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C107551265 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7378846406936646 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1458245 |
| concepts[0].display_name | Displacement (psychology) |
| concepts[1].id | https://openalex.org/C204366326 |
| concepts[1].level | 2 |
| concepts[1].score | 0.67872154712677 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q3027650 |
| concepts[1].display_name | Deformation (meteorology) |
| concepts[2].id | https://openalex.org/C2776247918 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6365398168563843 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1423713 |
| concepts[2].display_name | Structural health monitoring |
| concepts[3].id | https://openalex.org/C29660869 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6095234751701355 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5282615 |
| concepts[3].display_name | Displacement field |
| concepts[4].id | https://openalex.org/C50644808 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6034526824951172 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[4].display_name | Artificial neural network |
| concepts[5].id | https://openalex.org/C43091971 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5573190450668335 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1397391 |
| concepts[5].display_name | Fiber Bragg grating |
| concepts[6].id | https://openalex.org/C136428324 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5128164887428284 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q838414 |
| concepts[6].display_name | Deformation monitoring |
| concepts[7].id | https://openalex.org/C9652623 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47200819849967957 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[7].display_name | Field (mathematics) |
| concepts[8].id | https://openalex.org/C2777813233 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4472011923789978 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1527816 |
| concepts[8].display_name | Grating |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.4365261197090149 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4114655554294586 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C167740415 |
| concepts[11].level | 2 |
| concepts[11].score | 0.41107556223869324 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2876213 |
| concepts[11].display_name | Aerospace |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.40913987159729004 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C24890656 |
| concepts[13].level | 1 |
| concepts[13].score | 0.39801496267318726 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q82811 |
| concepts[13].display_name | Acoustics |
| concepts[14].id | https://openalex.org/C66938386 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3349054455757141 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[14].display_name | Structural engineering |
| concepts[15].id | https://openalex.org/C127413603 |
| concepts[15].level | 0 |
| concepts[15].score | 0.2777332663536072 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[15].display_name | Engineering |
| concepts[16].id | https://openalex.org/C192562407 |
| concepts[16].level | 0 |
| concepts[16].score | 0.26135963201522827 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[16].display_name | Materials science |
| concepts[17].id | https://openalex.org/C194232370 |
| concepts[17].level | 2 |
| concepts[17].score | 0.21076157689094543 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q162 |
| concepts[17].display_name | Optical fiber |
| concepts[18].id | https://openalex.org/C120665830 |
| concepts[18].level | 1 |
| concepts[18].score | 0.20178911089897156 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[18].display_name | Optics |
| concepts[19].id | https://openalex.org/C135628077 |
| concepts[19].level | 2 |
| concepts[19].score | 0.1667877733707428 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q220184 |
| concepts[19].display_name | Finite element method |
| concepts[20].id | https://openalex.org/C33923547 |
| concepts[20].level | 0 |
| concepts[20].score | 0.09930801391601562 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[20].display_name | Mathematics |
| concepts[21].id | https://openalex.org/C121332964 |
| concepts[21].level | 0 |
| concepts[21].score | 0.08944711089134216 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[21].display_name | Physics |
| concepts[22].id | https://openalex.org/C76155785 |
| concepts[22].level | 1 |
| concepts[22].score | 0.08760347962379456 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[22].display_name | Telecommunications |
| concepts[23].id | https://openalex.org/C146978453 |
| concepts[23].level | 1 |
| concepts[23].score | 0.08456811308860779 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q3798668 |
| concepts[23].display_name | Aerospace engineering |
| concepts[24].id | https://openalex.org/C15744967 |
| concepts[24].level | 0 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[24].display_name | Psychology |
| concepts[25].id | https://openalex.org/C542102704 |
| concepts[25].level | 1 |
| concepts[25].score | 0.0 |
| concepts[25].wikidata | https://www.wikidata.org/wiki/Q183257 |
| concepts[25].display_name | Psychotherapist |
| concepts[26].id | https://openalex.org/C202444582 |
| concepts[26].level | 1 |
| concepts[26].score | 0.0 |
| concepts[26].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[26].display_name | Pure mathematics |
| concepts[27].id | https://openalex.org/C159985019 |
| concepts[27].level | 1 |
| concepts[27].score | 0.0 |
| concepts[27].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[27].display_name | Composite material |
| keywords[0].id | https://openalex.org/keywords/displacement |
| keywords[0].score | 0.7378846406936646 |
| keywords[0].display_name | Displacement (psychology) |
| keywords[1].id | https://openalex.org/keywords/deformation |
| keywords[1].score | 0.67872154712677 |
| keywords[1].display_name | Deformation (meteorology) |
| keywords[2].id | https://openalex.org/keywords/structural-health-monitoring |
| keywords[2].score | 0.6365398168563843 |
| keywords[2].display_name | Structural health monitoring |
| keywords[3].id | https://openalex.org/keywords/displacement-field |
| keywords[3].score | 0.6095234751701355 |
| keywords[3].display_name | Displacement field |
| keywords[4].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[4].score | 0.6034526824951172 |
| keywords[4].display_name | Artificial neural network |
| keywords[5].id | https://openalex.org/keywords/fiber-bragg-grating |
| keywords[5].score | 0.5573190450668335 |
| keywords[5].display_name | Fiber Bragg grating |
| keywords[6].id | https://openalex.org/keywords/deformation-monitoring |
| keywords[6].score | 0.5128164887428284 |
| keywords[6].display_name | Deformation monitoring |
| keywords[7].id | https://openalex.org/keywords/field |
| keywords[7].score | 0.47200819849967957 |
| keywords[7].display_name | Field (mathematics) |
| keywords[8].id | https://openalex.org/keywords/grating |
| keywords[8].score | 0.4472011923789978 |
| keywords[8].display_name | Grating |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.4365261197090149 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.4114655554294586 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/aerospace |
| keywords[11].score | 0.41107556223869324 |
| keywords[11].display_name | Aerospace |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.40913987159729004 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/acoustics |
| keywords[13].score | 0.39801496267318726 |
| keywords[13].display_name | Acoustics |
| keywords[14].id | https://openalex.org/keywords/structural-engineering |
| keywords[14].score | 0.3349054455757141 |
| keywords[14].display_name | Structural engineering |
| keywords[15].id | https://openalex.org/keywords/engineering |
| keywords[15].score | 0.2777332663536072 |
| keywords[15].display_name | Engineering |
| keywords[16].id | https://openalex.org/keywords/materials-science |
| keywords[16].score | 0.26135963201522827 |
| keywords[16].display_name | Materials science |
| keywords[17].id | https://openalex.org/keywords/optical-fiber |
| keywords[17].score | 0.21076157689094543 |
| keywords[17].display_name | Optical fiber |
| keywords[18].id | https://openalex.org/keywords/optics |
| keywords[18].score | 0.20178911089897156 |
| keywords[18].display_name | Optics |
| keywords[19].id | https://openalex.org/keywords/finite-element-method |
| keywords[19].score | 0.1667877733707428 |
| keywords[19].display_name | Finite element method |
| keywords[20].id | https://openalex.org/keywords/mathematics |
| keywords[20].score | 0.09930801391601562 |
| keywords[20].display_name | Mathematics |
| keywords[21].id | https://openalex.org/keywords/physics |
| keywords[21].score | 0.08944711089134216 |
| keywords[21].display_name | Physics |
| keywords[22].id | https://openalex.org/keywords/telecommunications |
| keywords[22].score | 0.08760347962379456 |
| keywords[22].display_name | Telecommunications |
| keywords[23].id | https://openalex.org/keywords/aerospace-engineering |
| keywords[23].score | 0.08456811308860779 |
| keywords[23].display_name | Aerospace engineering |
| language | en |
| locations[0].id | doi:10.32604/sdhm.2022.018202 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210171318 |
| locations[0].source.issn | 1930-2983, 1930-2991 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1930-2983 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Structural durability & health monitoring |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Structural Durability & Health Monitoring |
| locations[0].landing_page_url | https://doi.org/10.32604/sdhm.2022.018202 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5110366251 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Kelong Huang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kelong Huang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101825455 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3537-9669 |
| authorships[1].author.display_name | Jie Yan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jie Yan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100658393 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0826-169X |
| authorships[2].author.display_name | Lei Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lei Zhang |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5023043630 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6239-3231 |
| authorships[3].author.display_name | Faye Zhang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Faye Zhang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5022632353 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-0031-7409 |
| authorships[4].author.display_name | Mingshun Jiang |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Mingshun Jiang |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5102020325 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-2541-7163 |
| authorships[5].author.display_name | Qingmei Sui |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Qingmei Sui |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.32604/sdhm.2022.018202 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Reconstruction Technology of Flexible Structure Shape Based on FBG Sensor Array and Deep Learning Algorithm |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10205 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9959999918937683 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced Fiber Optic Sensors |
| related_works | https://openalex.org/W2752435804, https://openalex.org/W2375850925, https://openalex.org/W3015557717, https://openalex.org/W2362949416, https://openalex.org/W4297143857, https://openalex.org/W2076312556, https://openalex.org/W2508970642, https://openalex.org/W1980177636, https://openalex.org/W4205313231, https://openalex.org/W2387153387 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 4 |
| locations_count | 1 |
| best_oa_location.id | doi:10.32604/sdhm.2022.018202 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210171318 |
| best_oa_location.source.issn | 1930-2983, 1930-2991 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1930-2983 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Structural durability & health monitoring |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Structural Durability & Health Monitoring |
| best_oa_location.landing_page_url | https://doi.org/10.32604/sdhm.2022.018202 |
| primary_location.id | doi:10.32604/sdhm.2022.018202 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210171318 |
| primary_location.source.issn | 1930-2983, 1930-2991 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1930-2983 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Structural durability & health monitoring |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Structural Durability & Health Monitoring |
| primary_location.landing_page_url | https://doi.org/10.32604/sdhm.2022.018202 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W1973688131, https://openalex.org/W6668861121, https://openalex.org/W6996620445, https://openalex.org/W2389176991, https://openalex.org/W2312298399, https://openalex.org/W2900132963, https://openalex.org/W347014439, https://openalex.org/W1972354206, https://openalex.org/W2955076047, https://openalex.org/W1992447074, https://openalex.org/W2048329850, https://openalex.org/W2061015086, https://openalex.org/W2035722575, https://openalex.org/W1986128899, https://openalex.org/W2018571259, https://openalex.org/W2136922672, https://openalex.org/W2745541172, https://openalex.org/W6687483927, https://openalex.org/W1985716339, https://openalex.org/W2151066929, https://openalex.org/W2135799905, https://openalex.org/W6767712112, https://openalex.org/W6767826074, https://openalex.org/W6638667902, https://openalex.org/W6631190155, https://openalex.org/W4236965008, https://openalex.org/W2607662938, https://openalex.org/W1964272755, https://openalex.org/W2029116267, https://openalex.org/W4238765462, https://openalex.org/W4230531492, https://openalex.org/W4240705229, https://openalex.org/W2284433237, https://openalex.org/W1522301498, https://openalex.org/W751307961 |
| referenced_works_count | 35 |
| abstract_inverted_index.A | 0 |
| abstract_inverted_index.a | 70 |
| abstract_inverted_index.By | 89 |
| abstract_inverted_index.an | 76 |
| abstract_inverted_index.at | 10 |
| abstract_inverted_index.be | 184 |
| abstract_inverted_index.by | 135, 166 |
| abstract_inverted_index.in | 24, 178 |
| abstract_inverted_index.is | 6, 87, 148, 169, 176 |
| abstract_inverted_index.of | 13, 20, 36, 53, 56, 94, 101, 141, 158, 161, 190 |
| abstract_inverted_index.on | 75, 115, 129 |
| abstract_inverted_index.to | 8, 97, 186 |
| abstract_inverted_index.aim | 9 |
| abstract_inverted_index.and | 16, 66, 68, 108, 122, 180, 182 |
| abstract_inverted_index.are | 112 |
| abstract_inverted_index.can | 183 |
| abstract_inverted_index.mm. | 173 |
| abstract_inverted_index.the | 11, 25, 31, 37, 42, 51, 61, 81, 91, 95, 102, 105, 116, 123, 130, 137, 142, 154, 159, 162, 187 |
| abstract_inverted_index.Then | 80 |
| abstract_inverted_index.This | 28, 47, 174 |
| abstract_inverted_index.deep | 32 |
| abstract_inverted_index.dial | 124 |
| abstract_inverted_index.less | 170 |
| abstract_inverted_index.mean | 155 |
| abstract_inverted_index.real | 109 |
| abstract_inverted_index.show | 152 |
| abstract_inverted_index.than | 171 |
| abstract_inverted_index.that | 153 |
| abstract_inverted_index.this | 167 |
| abstract_inverted_index.with | 41 |
| abstract_inverted_index.0.032 | 172 |
| abstract_inverted_index.based | 74, 114, 128 |
| abstract_inverted_index.error | 157 |
| abstract_inverted_index.fiber | 43, 57, 118 |
| abstract_inverted_index.field | 3, 18, 139 |
| abstract_inverted_index.first | 49 |
| abstract_inverted_index.model | 35, 73, 133 |
| abstract_inverted_index.motor | 96 |
| abstract_inverted_index.paper | 48 |
| abstract_inverted_index.plate | 103 |
| abstract_inverted_index.under | 144 |
| abstract_inverted_index.array. | 126 |
| abstract_inverted_index.built. | 88 |
| abstract_inverted_index.field. | 27 |
| abstract_inverted_index.method | 5, 29, 168, 175 |
| abstract_inverted_index.neural | 33, 78 |
| abstract_inverted_index.points | 164 |
| abstract_inverted_index.sensor | 45, 120 |
| abstract_inverted_index.states | 147 |
| abstract_inverted_index.strain | 54, 65, 106 |
| abstract_inverted_index.system | 86 |
| abstract_inverted_index.theory | 179 |
| abstract_inverted_index.applied | 185 |
| abstract_inverted_index.between | 64 |
| abstract_inverted_index.grating | 44, 58, 119 |
| abstract_inverted_index.mapping | 62 |
| abstract_inverted_index.network | 34, 121 |
| abstract_inverted_index.produce | 98 |
| abstract_inverted_index.results | 151 |
| abstract_inverted_index.sensor, | 59 |
| abstract_inverted_index.studies | 60 |
| abstract_inverted_index.vehicle | 192 |
| abstract_inverted_index.Finally, | 127 |
| abstract_inverted_index.absolute | 156 |
| abstract_inverted_index.combines | 30 |
| abstract_inverted_index.distance | 93 |
| abstract_inverted_index.feasible | 177 |
| abstract_inverted_index.flexible | 21 |
| abstract_inverted_index.improved | 77 |
| abstract_inverted_index.network. | 46, 79 |
| abstract_inverted_index.obtained | 113, 134, 165 |
| abstract_inverted_index.practice | 181 |
| abstract_inverted_index.problems | 12 |
| abstract_inverted_index.proposed | 7 |
| abstract_inverted_index.proposes | 69 |
| abstract_inverted_index.stepping | 92 |
| abstract_inverted_index.aerospace | 26, 191 |
| abstract_inverted_index.detection | 55 |
| abstract_inverted_index.different | 99, 145 |
| abstract_inverted_index.indicator | 125 |
| abstract_inverted_index.measuring | 163 |
| abstract_inverted_index.principle | 52 |
| abstract_inverted_index.realized. | 149 |
| abstract_inverted_index.structure | 40, 83, 143 |
| abstract_inverted_index.training, | 136 |
| abstract_inverted_index.connection | 39 |
| abstract_inverted_index.conversion | 72 |
| abstract_inverted_index.introduces | 50 |
| abstract_inverted_index.monitoring | 15, 85, 189 |
| abstract_inverted_index.plate-like | 22 |
| abstract_inverted_index.prediction | 132 |
| abstract_inverted_index.structural | 1 |
| abstract_inverted_index.structure, | 104 |
| abstract_inverted_index.structures | 23 |
| abstract_inverted_index.controlling | 90 |
| abstract_inverted_index.cross-layer | 38 |
| abstract_inverted_index.deformation | 14, 84, 131, 146, 160, 188 |
| abstract_inverted_index.information | 107, 111 |
| abstract_inverted_index.intelligent | 82 |
| abstract_inverted_index.structures. | 193 |
| abstract_inverted_index.Experimental | 150 |
| abstract_inverted_index.deformations | 100 |
| abstract_inverted_index.displacement | 2, 17, 110, 138 |
| abstract_inverted_index.high-density | 117 |
| abstract_inverted_index.relationship | 63 |
| abstract_inverted_index.displacement, | 67 |
| abstract_inverted_index.reconstruction | 4, 19, 140 |
| abstract_inverted_index.strain-displacement | 71 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.49000000953674316 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.57569627 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |