Recourse for Reclamation: Chatting with Generative Language Models Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1145/3613905.3650999
Researchers and developers increasingly rely on toxicity scoring to moderate\ngenerative language model outputs, in settings such as customer service,\ninformation retrieval, and content generation. However, toxicity scoring may\nrender pertinent information inaccessible, rigidify or "value-lock" cultural\nnorms, and prevent language reclamation processes, particularly for\nmarginalized people. In this work, we extend the concept of algorithmic\nrecourse to generative language models: we provide users a novel mechanism to\nachieve their desired prediction by dynamically setting thresholds for toxicity\nfiltering. Users thereby exercise increased agency relative to interactions\nwith the baseline system. A pilot study ($n = 30$) supports the potential of\nour proposed recourse mechanism, indicating improvements in usability compared\nto fixed-threshold toxicity-filtering of model outputs. Future work should\nexplore the intersection of toxicity scoring, model controllability, user\nagency, and language reclamation processes -- particularly with regard to the\nbias that many communities encounter when interacting with generative language\nmodels.\n
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1145/3613905.3650999
- https://dl.acm.org/doi/pdf/10.1145/3613905.3650999
- OA Status
- gold
- References
- 50
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4393119066
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4393119066Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3613905.3650999Digital Object Identifier
- Title
-
Recourse for Reclamation: Chatting with Generative Language ModelsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-02Full publication date if available
- Authors
-
Jennifer Chien, Kevin R. McKee, Jackie Kay, William IsaacList of authors in order
- Landing page
-
https://doi.org/10.1145/3613905.3650999Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3613905.3650999Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3613905.3650999Direct OA link when available
- Concepts
-
Land reclamation, Generative grammar, Computer science, Natural language processing, Artificial intelligence, Geography, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
50Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4393119066 |
|---|---|
| doi | https://doi.org/10.1145/3613905.3650999 |
| ids.doi | https://doi.org/10.1145/3613905.3650999 |
| ids.openalex | https://openalex.org/W4393119066 |
| fwci | 0.0 |
| type | preprint |
| title | Recourse for Reclamation: Chatting with Generative Language Models |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 14 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T10028 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9864000082015991 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Topic Modeling |
| topics[1].id | https://openalex.org/T11714 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.964900016784668 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Multimodal Machine Learning Applications |
| topics[2].id | https://openalex.org/T10883 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9488999843597412 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3311 |
| topics[2].subfield.display_name | Safety Research |
| topics[2].display_name | Ethics and Social Impacts of AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C61661205 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7584313154220581 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1130322 |
| concepts[0].display_name | Land reclamation |
| concepts[1].id | https://openalex.org/C39890363 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7434385418891907 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q36108 |
| concepts[1].display_name | Generative grammar |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6612517833709717 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C204321447 |
| concepts[3].level | 1 |
| concepts[3].score | 0.34702372550964355 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[3].display_name | Natural language processing |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3375578820705414 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C205649164 |
| concepts[5].level | 0 |
| concepts[5].score | 0.10687139630317688 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[5].display_name | Geography |
| concepts[6].id | https://openalex.org/C166957645 |
| concepts[6].level | 1 |
| concepts[6].score | 0.0 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[6].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/land-reclamation |
| keywords[0].score | 0.7584313154220581 |
| keywords[0].display_name | Land reclamation |
| keywords[1].id | https://openalex.org/keywords/generative-grammar |
| keywords[1].score | 0.7434385418891907 |
| keywords[1].display_name | Generative grammar |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6612517833709717 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/natural-language-processing |
| keywords[3].score | 0.34702372550964355 |
| keywords[3].display_name | Natural language processing |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.3375578820705414 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/geography |
| keywords[5].score | 0.10687139630317688 |
| keywords[5].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1145/3613905.3650999 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3613905.3650999 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Extended Abstracts of the CHI Conference on Human Factors in Computing Systems |
| locations[0].landing_page_url | https://doi.org/10.1145/3613905.3650999 |
| locations[1].id | pmh:oai:arXiv.org:2403.14467 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2403.14467 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2403.14467 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5017110754 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-8768-1761 |
| authorships[0].author.display_name | Jennifer Chien |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I36258959 |
| authorships[0].affiliations[0].raw_affiliation_string | Computer Science and Engineering, University of California San Diego, United States |
| authorships[0].institutions[0].id | https://openalex.org/I36258959 |
| authorships[0].institutions[0].ror | https://ror.org/0168r3w48 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I36258959 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, San Diego |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jennifer Chien |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Computer Science and Engineering, University of California San Diego, United States |
| authorships[1].author.id | https://openalex.org/A5013841168 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4412-1686 |
| authorships[1].author.display_name | Kevin R. McKee |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| authorships[1].affiliations[0].raw_affiliation_string | Google DeepMind, United Kingdom |
| authorships[1].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[1].institutions[0].ror | https://ror.org/00971b260 |
| authorships[1].institutions[0].type | company |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[1].institutions[1].id | https://openalex.org/I4210113297 |
| authorships[1].institutions[1].ror | https://ror.org/024bc3e07 |
| authorships[1].institutions[1].type | company |
| authorships[1].institutions[1].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[1].institutions[1].country_code | GB |
| authorships[1].institutions[1].display_name | Google (United Kingdom) |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Kevin Mckee |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Google DeepMind, United Kingdom |
| authorships[2].author.id | https://openalex.org/A5052060244 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9593-695X |
| authorships[2].author.display_name | Jackie Kay |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210113297 |
| authorships[2].affiliations[0].raw_affiliation_string | Google Deepmind, United Kingdom |
| authorships[2].institutions[0].id | https://openalex.org/I4210113297 |
| authorships[2].institutions[0].ror | https://ror.org/024bc3e07 |
| authorships[2].institutions[0].type | company |
| authorships[2].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Google (United Kingdom) |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jackie Kay |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Google Deepmind, United Kingdom |
| authorships[3].author.id | https://openalex.org/A5048272174 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1297-5409 |
| authorships[3].author.display_name | William Isaac |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210090411, https://openalex.org/I4210113297 |
| authorships[3].affiliations[0].raw_affiliation_string | Google DeepMind, United Kingdom |
| authorships[3].institutions[0].id | https://openalex.org/I4210090411 |
| authorships[3].institutions[0].ror | https://ror.org/00971b260 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210090411, https://openalex.org/I4210128969 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | DeepMind (United Kingdom) |
| authorships[3].institutions[1].id | https://openalex.org/I4210113297 |
| authorships[3].institutions[1].ror | https://ror.org/024bc3e07 |
| authorships[3].institutions[1].type | company |
| authorships[3].institutions[1].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210113297, https://openalex.org/I4210128969 |
| authorships[3].institutions[1].country_code | GB |
| authorships[3].institutions[1].display_name | Google (United Kingdom) |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | William Isaac |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Google DeepMind, United Kingdom |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3613905.3650999 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Recourse for Reclamation: Chatting with Generative Language Models |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10028 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9864000082015991 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Topic Modeling |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2351978338, https://openalex.org/W2369329102, https://openalex.org/W2355403593, https://openalex.org/W2374873665, https://openalex.org/W2073128866, https://openalex.org/W2388001001, https://openalex.org/W2028004539, https://openalex.org/W3204019825 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1145/3613905.3650999 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3613905.3650999 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Extended Abstracts of the CHI Conference on Human Factors in Computing Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3613905.3650999 |
| primary_location.id | doi:10.1145/3613905.3650999 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3613905.3650999 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Extended Abstracts of the CHI Conference on Human Factors in Computing Systems |
| primary_location.landing_page_url | https://doi.org/10.1145/3613905.3650999 |
| publication_date | 2024-05-02 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3184144760, https://openalex.org/W3191598918, https://openalex.org/W2008251417, https://openalex.org/W3133702157, https://openalex.org/W4296405185, https://openalex.org/W4200593473, https://openalex.org/W4388007941, https://openalex.org/W2976405847, https://openalex.org/W2030936754, https://openalex.org/W4287889978, https://openalex.org/W2963032716, https://openalex.org/W4281721666, https://openalex.org/W3029662682, https://openalex.org/W2685368918, https://openalex.org/W4323309541, https://openalex.org/W2806347998, https://openalex.org/W3008694996, https://openalex.org/W2913525780, https://openalex.org/W2888421747, https://openalex.org/W3196190653, https://openalex.org/W2997400962, https://openalex.org/W4226290207, https://openalex.org/W3135487809, https://openalex.org/W3003734448, https://openalex.org/W2143342727, https://openalex.org/W4319300755, https://openalex.org/W2795274753, https://openalex.org/W2702317258, https://openalex.org/W2899652826, https://openalex.org/W2888078780, https://openalex.org/W4387821331, https://openalex.org/W3088216614, https://openalex.org/W4377372266, https://openalex.org/W2949678053, https://openalex.org/W3191136298, https://openalex.org/W3160694721, https://openalex.org/W2903222856, https://openalex.org/W3126557831, https://openalex.org/W3134481631, https://openalex.org/W2891340972, https://openalex.org/W2765204106, https://openalex.org/W3030131444, https://openalex.org/W4294084120, https://openalex.org/W3101038122, https://openalex.org/W2158672897, https://openalex.org/W3185376810, https://openalex.org/W2901668600, https://openalex.org/W2165421558, https://openalex.org/W2333234127, https://openalex.org/W4298235707 |
| referenced_works_count | 50 |
| abstract_inverted_index.= | 86 |
| abstract_inverted_index.A | 82 |
| abstract_inverted_index.a | 58 |
| abstract_inverted_index.-- | 120 |
| abstract_inverted_index.In | 42 |
| abstract_inverted_index.as | 16 |
| abstract_inverted_index.by | 65 |
| abstract_inverted_index.in | 13, 97 |
| abstract_inverted_index.of | 49, 102, 110 |
| abstract_inverted_index.on | 5 |
| abstract_inverted_index.or | 31 |
| abstract_inverted_index.to | 8, 51, 77, 124 |
| abstract_inverted_index.we | 45, 55 |
| abstract_inverted_index.($n | 85 |
| abstract_inverted_index.and | 1, 20, 34, 116 |
| abstract_inverted_index.for | 69 |
| abstract_inverted_index.the | 47, 79, 89, 108 |
| abstract_inverted_index.30$) | 87 |
| abstract_inverted_index.many | 127 |
| abstract_inverted_index.rely | 4 |
| abstract_inverted_index.such | 15 |
| abstract_inverted_index.that | 126 |
| abstract_inverted_index.this | 43 |
| abstract_inverted_index.when | 130 |
| abstract_inverted_index.with | 122, 132 |
| abstract_inverted_index.work | 106 |
| abstract_inverted_index.Users | 71 |
| abstract_inverted_index.model | 11, 103, 113 |
| abstract_inverted_index.novel | 59 |
| abstract_inverted_index.pilot | 83 |
| abstract_inverted_index.study | 84 |
| abstract_inverted_index.their | 62 |
| abstract_inverted_index.users | 57 |
| abstract_inverted_index.work, | 44 |
| abstract_inverted_index.Future | 105 |
| abstract_inverted_index.agency | 75 |
| abstract_inverted_index.extend | 46 |
| abstract_inverted_index.regard | 123 |
| abstract_inverted_index.concept | 48 |
| abstract_inverted_index.content | 21 |
| abstract_inverted_index.desired | 63 |
| abstract_inverted_index.models: | 54 |
| abstract_inverted_index.of\nour | 91 |
| abstract_inverted_index.people. | 41 |
| abstract_inverted_index.prevent | 35 |
| abstract_inverted_index.provide | 56 |
| abstract_inverted_index.scoring | 7, 25 |
| abstract_inverted_index.setting | 67 |
| abstract_inverted_index.system. | 81 |
| abstract_inverted_index.thereby | 72 |
| abstract_inverted_index.However, | 23 |
| abstract_inverted_index.baseline | 80 |
| abstract_inverted_index.customer | 17 |
| abstract_inverted_index.exercise | 73 |
| abstract_inverted_index.language | 10, 36, 53, 117 |
| abstract_inverted_index.outputs, | 12 |
| abstract_inverted_index.outputs. | 104 |
| abstract_inverted_index.proposed | 92 |
| abstract_inverted_index.recourse | 93 |
| abstract_inverted_index.relative | 76 |
| abstract_inverted_index.rigidify | 30 |
| abstract_inverted_index.scoring, | 112 |
| abstract_inverted_index.settings | 14 |
| abstract_inverted_index.supports | 88 |
| abstract_inverted_index.toxicity | 6, 24, 111 |
| abstract_inverted_index.encounter | 129 |
| abstract_inverted_index.increased | 74 |
| abstract_inverted_index.mechanism | 60 |
| abstract_inverted_index.pertinent | 27 |
| abstract_inverted_index.potential | 90 |
| abstract_inverted_index.processes | 119 |
| abstract_inverted_index.the\nbias | 125 |
| abstract_inverted_index.usability | 98 |
| abstract_inverted_index.developers | 2 |
| abstract_inverted_index.generative | 52, 133 |
| abstract_inverted_index.indicating | 95 |
| abstract_inverted_index.mechanism, | 94 |
| abstract_inverted_index.prediction | 64 |
| abstract_inverted_index.processes, | 38 |
| abstract_inverted_index.retrieval, | 19 |
| abstract_inverted_index.thresholds | 68 |
| abstract_inverted_index.Researchers | 0 |
| abstract_inverted_index.communities | 128 |
| abstract_inverted_index.dynamically | 66 |
| abstract_inverted_index.generation. | 22 |
| abstract_inverted_index.information | 28 |
| abstract_inverted_index.interacting | 131 |
| abstract_inverted_index.may\nrender | 26 |
| abstract_inverted_index.reclamation | 37, 118 |
| abstract_inverted_index.to\nachieve | 61 |
| abstract_inverted_index."value-lock" | 32 |
| abstract_inverted_index.compared\nto | 99 |
| abstract_inverted_index.improvements | 96 |
| abstract_inverted_index.increasingly | 3 |
| abstract_inverted_index.intersection | 109 |
| abstract_inverted_index.particularly | 39, 121 |
| abstract_inverted_index.inaccessible, | 29 |
| abstract_inverted_index.user\nagency, | 115 |
| abstract_inverted_index.fixed-threshold | 100 |
| abstract_inverted_index.should\nexplore | 107 |
| abstract_inverted_index.controllability, | 114 |
| abstract_inverted_index.cultural\nnorms, | 33 |
| abstract_inverted_index.for\nmarginalized | 40 |
| abstract_inverted_index.interactions\nwith | 78 |
| abstract_inverted_index.toxicity-filtering | 101 |
| abstract_inverted_index.language\nmodels.\n | 134 |
| abstract_inverted_index.moderate\ngenerative | 9 |
| abstract_inverted_index.toxicity\nfiltering. | 70 |
| abstract_inverted_index.algorithmic\nrecourse | 50 |
| abstract_inverted_index.service,\ninformation | 18 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.5899999737739563 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile.value | 0.03707433 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |