Recurrent Neural Networks for Dynamical Systems: Applications to Ordinary Differential Equations, Collective Motion, and Hydrological Modeling Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2202.07022
Classical methods of solving spatiotemporal dynamical systems include statistical approaches such as autoregressive integrated moving average, which assume linear and stationary relationships between systems' previous outputs. Development and implementation of linear methods are relatively simple, but they often do not capture non-linear relationships in the data. Thus, artificial neural networks (ANNs) are receiving attention from researchers in analyzing and forecasting dynamical systems. Recurrent neural networks (RNN), derived from feed-forward ANNs, use internal memory to process variable-length sequences of inputs. This allows RNNs to applicable for finding solutions for a vast variety of problems in spatiotemporal dynamical systems. Thus, in this paper, we utilize RNNs to treat some specific issues associated with dynamical systems. Specifically, we analyze the performance of RNNs applied to three tasks: reconstruction of correct Lorenz solutions for a system with a formulation error, reconstruction of corrupted collective motion trajectories, and forecasting of streamflow time series possessing spikes, representing three fields, namely, ordinary differential equations, collective motion, and hydrological modeling, respectively. We train and test RNNs uniquely in each task to demonstrate the broad applicability of RNNs in reconstruction and forecasting the dynamics of dynamical systems.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2202.07022
- https://arxiv.org/pdf/2202.07022
- OA Status
- green
- Cited By
- 2
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4221160312
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4221160312Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2202.07022Digital Object Identifier
- Title
-
Recurrent Neural Networks for Dynamical Systems: Applications to Ordinary Differential Equations, Collective Motion, and Hydrological ModelingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-14Full publication date if available
- Authors
-
Yonggi Park, Kelum Gajamannage, Dilhani I. Jayathilake, Erik M. BolltList of authors in order
- Landing page
-
https://arxiv.org/abs/2202.07022Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2202.07022Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2202.07022Direct OA link when available
- Concepts
-
Dynamical systems theory, Recurrent neural network, Computer science, Autoregressive model, Ordinary differential equation, Artificial neural network, Dynamical system (definition), Linear dynamical system, Artificial intelligence, Differential equation, Mathematics, Physics, Quantum mechanics, Econometrics, Mathematical analysisTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2023: 2Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4221160312 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2202.07022 |
| ids.doi | https://doi.org/10.48550/arxiv.2202.07022 |
| ids.openalex | https://openalex.org/W4221160312 |
| fwci | 0.0 |
| type | preprint |
| title | Recurrent Neural Networks for Dynamical Systems: Applications to Ordinary Differential Equations, Collective Motion, and Hydrological Modeling |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11206 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.9887999892234802 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Model Reduction and Neural Networks |
| topics[1].id | https://openalex.org/T10266 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9643999934196472 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Plant Water Relations and Carbon Dynamics |
| topics[2].id | https://openalex.org/T10330 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9520000219345093 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2312 |
| topics[2].subfield.display_name | Water Science and Technology |
| topics[2].display_name | Hydrology and Watershed Management Studies |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C79379906 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7832129001617432 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3174497 |
| concepts[0].display_name | Dynamical systems theory |
| concepts[1].id | https://openalex.org/C147168706 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7779809236526489 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1457734 |
| concepts[1].display_name | Recurrent neural network |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6906487345695496 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C159877910 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5995579361915588 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2202883 |
| concepts[3].display_name | Autoregressive model |
| concepts[4].id | https://openalex.org/C51544822 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5776644945144653 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q465274 |
| concepts[4].display_name | Ordinary differential equation |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5359855890274048 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C33962884 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5190382599830627 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q378637 |
| concepts[6].display_name | Dynamical system (definition) |
| concepts[7].id | https://openalex.org/C114275822 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4603204131126404 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q621512 |
| concepts[7].display_name | Linear dynamical system |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.45673608779907227 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C78045399 |
| concepts[9].level | 2 |
| concepts[9].score | 0.2836298942565918 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11214 |
| concepts[9].display_name | Differential equation |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.2306179702281952 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C121332964 |
| concepts[11].level | 0 |
| concepts[11].score | 0.08463811874389648 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[11].display_name | Physics |
| concepts[12].id | https://openalex.org/C62520636 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[12].display_name | Quantum mechanics |
| concepts[13].id | https://openalex.org/C149782125 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[13].display_name | Econometrics |
| concepts[14].id | https://openalex.org/C134306372 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[14].display_name | Mathematical analysis |
| keywords[0].id | https://openalex.org/keywords/dynamical-systems-theory |
| keywords[0].score | 0.7832129001617432 |
| keywords[0].display_name | Dynamical systems theory |
| keywords[1].id | https://openalex.org/keywords/recurrent-neural-network |
| keywords[1].score | 0.7779809236526489 |
| keywords[1].display_name | Recurrent neural network |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6906487345695496 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/autoregressive-model |
| keywords[3].score | 0.5995579361915588 |
| keywords[3].display_name | Autoregressive model |
| keywords[4].id | https://openalex.org/keywords/ordinary-differential-equation |
| keywords[4].score | 0.5776644945144653 |
| keywords[4].display_name | Ordinary differential equation |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.5359855890274048 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/dynamical-system |
| keywords[6].score | 0.5190382599830627 |
| keywords[6].display_name | Dynamical system (definition) |
| keywords[7].id | https://openalex.org/keywords/linear-dynamical-system |
| keywords[7].score | 0.4603204131126404 |
| keywords[7].display_name | Linear dynamical system |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.45673608779907227 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/differential-equation |
| keywords[9].score | 0.2836298942565918 |
| keywords[9].display_name | Differential equation |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.2306179702281952 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/physics |
| keywords[11].score | 0.08463811874389648 |
| keywords[11].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2202.07022 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2202.07022 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2202.07022 |
| locations[1].id | doi:10.48550/arxiv.2202.07022 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2202.07022 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5103232706 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3544-4413 |
| authorships[0].author.display_name | Yonggi Park |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Park, Yonggi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5085021434 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9179-3787 |
| authorships[1].author.display_name | Kelum Gajamannage |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gajamannage, Kelum |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5016683798 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2793-6285 |
| authorships[2].author.display_name | Dilhani I. Jayathilake |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jayathilake, Dilhani I. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5003961936 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7083-7592 |
| authorships[3].author.display_name | Erik M. Bollt |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Bollt, Erik M. |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2202.07022 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-04-03T00:00:00 |
| display_name | Recurrent Neural Networks for Dynamical Systems: Applications to Ordinary Differential Equations, Collective Motion, and Hydrological Modeling |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11206 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.9887999892234802 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Model Reduction and Neural Networks |
| related_works | https://openalex.org/W2230606337, https://openalex.org/W4250831671, https://openalex.org/W2592826714, https://openalex.org/W4238935091, https://openalex.org/W2050811761, https://openalex.org/W2738494313, https://openalex.org/W2044696633, https://openalex.org/W2051295858, https://openalex.org/W1587625526, https://openalex.org/W2007676268 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2023 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2202.07022 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2202.07022 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2202.07022 |
| primary_location.id | pmh:oai:arXiv.org:2202.07022 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2202.07022 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2202.07022 |
| publication_date | 2022-02-14 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 88, 130, 133 |
| abstract_inverted_index.We | 163 |
| abstract_inverted_index.as | 11 |
| abstract_inverted_index.do | 38 |
| abstract_inverted_index.in | 43, 56, 93, 98, 169, 179 |
| abstract_inverted_index.of | 2, 29, 77, 91, 118, 125, 137, 144, 177, 185 |
| abstract_inverted_index.to | 73, 82, 104, 121, 172 |
| abstract_inverted_index.we | 101, 114 |
| abstract_inverted_index.and | 19, 27, 58, 142, 159, 165, 181 |
| abstract_inverted_index.are | 32, 51 |
| abstract_inverted_index.but | 35 |
| abstract_inverted_index.for | 84, 87, 129 |
| abstract_inverted_index.not | 39 |
| abstract_inverted_index.the | 44, 116, 174, 183 |
| abstract_inverted_index.use | 70 |
| abstract_inverted_index.RNNs | 81, 103, 119, 167, 178 |
| abstract_inverted_index.This | 79 |
| abstract_inverted_index.each | 170 |
| abstract_inverted_index.from | 54, 67 |
| abstract_inverted_index.some | 106 |
| abstract_inverted_index.such | 10 |
| abstract_inverted_index.task | 171 |
| abstract_inverted_index.test | 166 |
| abstract_inverted_index.they | 36 |
| abstract_inverted_index.this | 99 |
| abstract_inverted_index.time | 146 |
| abstract_inverted_index.vast | 89 |
| abstract_inverted_index.with | 110, 132 |
| abstract_inverted_index.ANNs, | 69 |
| abstract_inverted_index.Thus, | 46, 97 |
| abstract_inverted_index.broad | 175 |
| abstract_inverted_index.data. | 45 |
| abstract_inverted_index.often | 37 |
| abstract_inverted_index.three | 122, 151 |
| abstract_inverted_index.train | 164 |
| abstract_inverted_index.treat | 105 |
| abstract_inverted_index.which | 16 |
| abstract_inverted_index.(ANNs) | 50 |
| abstract_inverted_index.(RNN), | 65 |
| abstract_inverted_index.Lorenz | 127 |
| abstract_inverted_index.allows | 80 |
| abstract_inverted_index.assume | 17 |
| abstract_inverted_index.error, | 135 |
| abstract_inverted_index.issues | 108 |
| abstract_inverted_index.linear | 18, 30 |
| abstract_inverted_index.memory | 72 |
| abstract_inverted_index.motion | 140 |
| abstract_inverted_index.moving | 14 |
| abstract_inverted_index.neural | 48, 63 |
| abstract_inverted_index.paper, | 100 |
| abstract_inverted_index.series | 147 |
| abstract_inverted_index.system | 131 |
| abstract_inverted_index.tasks: | 123 |
| abstract_inverted_index.analyze | 115 |
| abstract_inverted_index.applied | 120 |
| abstract_inverted_index.between | 22 |
| abstract_inverted_index.capture | 40 |
| abstract_inverted_index.correct | 126 |
| abstract_inverted_index.derived | 66 |
| abstract_inverted_index.fields, | 152 |
| abstract_inverted_index.finding | 85 |
| abstract_inverted_index.include | 7 |
| abstract_inverted_index.inputs. | 78 |
| abstract_inverted_index.methods | 1, 31 |
| abstract_inverted_index.motion, | 158 |
| abstract_inverted_index.namely, | 153 |
| abstract_inverted_index.process | 74 |
| abstract_inverted_index.simple, | 34 |
| abstract_inverted_index.solving | 3 |
| abstract_inverted_index.spikes, | 149 |
| abstract_inverted_index.systems | 6 |
| abstract_inverted_index.utilize | 102 |
| abstract_inverted_index.variety | 90 |
| abstract_inverted_index.average, | 15 |
| abstract_inverted_index.dynamics | 184 |
| abstract_inverted_index.internal | 71 |
| abstract_inverted_index.networks | 49, 64 |
| abstract_inverted_index.ordinary | 154 |
| abstract_inverted_index.outputs. | 25 |
| abstract_inverted_index.previous | 24 |
| abstract_inverted_index.problems | 92 |
| abstract_inverted_index.specific | 107 |
| abstract_inverted_index.systems' | 23 |
| abstract_inverted_index.systems. | 61, 96, 112, 187 |
| abstract_inverted_index.uniquely | 168 |
| abstract_inverted_index.Classical | 0 |
| abstract_inverted_index.Recurrent | 62 |
| abstract_inverted_index.analyzing | 57 |
| abstract_inverted_index.attention | 53 |
| abstract_inverted_index.corrupted | 138 |
| abstract_inverted_index.dynamical | 5, 60, 95, 111, 186 |
| abstract_inverted_index.modeling, | 161 |
| abstract_inverted_index.receiving | 52 |
| abstract_inverted_index.sequences | 76 |
| abstract_inverted_index.solutions | 86, 128 |
| abstract_inverted_index.applicable | 83 |
| abstract_inverted_index.approaches | 9 |
| abstract_inverted_index.artificial | 47 |
| abstract_inverted_index.associated | 109 |
| abstract_inverted_index.collective | 139, 157 |
| abstract_inverted_index.equations, | 156 |
| abstract_inverted_index.integrated | 13 |
| abstract_inverted_index.non-linear | 41 |
| abstract_inverted_index.possessing | 148 |
| abstract_inverted_index.relatively | 33 |
| abstract_inverted_index.stationary | 20 |
| abstract_inverted_index.streamflow | 145 |
| abstract_inverted_index.Development | 26 |
| abstract_inverted_index.demonstrate | 173 |
| abstract_inverted_index.forecasting | 59, 143, 182 |
| abstract_inverted_index.formulation | 134 |
| abstract_inverted_index.performance | 117 |
| abstract_inverted_index.researchers | 55 |
| abstract_inverted_index.statistical | 8 |
| abstract_inverted_index.differential | 155 |
| abstract_inverted_index.feed-forward | 68 |
| abstract_inverted_index.hydrological | 160 |
| abstract_inverted_index.representing | 150 |
| abstract_inverted_index.Specifically, | 113 |
| abstract_inverted_index.applicability | 176 |
| abstract_inverted_index.relationships | 21, 42 |
| abstract_inverted_index.respectively. | 162 |
| abstract_inverted_index.trajectories, | 141 |
| abstract_inverted_index.autoregressive | 12 |
| abstract_inverted_index.implementation | 28 |
| abstract_inverted_index.reconstruction | 124, 136, 180 |
| abstract_inverted_index.spatiotemporal | 4, 94 |
| abstract_inverted_index.variable-length | 75 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |