Reduced-order modeling and classification of hydrodynamic pattern formation in gravure printing Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1088/3049-4761/adf115
Hydrodynamic pattern formation phenomena in printing and coating processes are still not fully understood. However, fundamental understanding is essential to achieve high-quality printed products and to tune printed patterns according to the needs of a specific application like printed electronics, graphical printing, or biomedical printing. The aim of the paper is to develop an automated pattern classification algorithm based on methods from supervised machine learning and reduced-order modeling. We use the HYPA-p dataset, a large image dataset of gravure-printed images, which shows various types of hydrodynamic pattern formation phenomena. It enables the correlation of printing process parameters and resulting printed patterns for the first time. A total of 26 880 images of the HYPA-p dataset have been labeled by a human observer as dot patterns, mixed patterns, or finger patterns; 864 000 images (97%) are unlabeled. A singular value decomposition is used to find the modes of the labeled images and to reduce the dimensionality of the full dataset by truncation and projection. Selected machine learning classification techniques are trained on the reduced-order data. We investigate the effect of several factors, including classifier choice, whether or not fast Fourier transform (FFT) is used to preprocess the labeled images, data balancing, and data normalization. The best performing model is a k-nearest neighbor (kNN) classifier trained on unbalanced, FFT-transformed data with a test error of 3%, which outperforms a human observer by 7%. Data balancing slightly increases the test error of the kNN-model to 5%, but also increases the recall of the mixed class from 90% to 94%. Finally, we demonstrate how the trained models can be used to predict the pattern class of unlabeled images and how the predictions can be correlated to the printing process parameters, in the form of regime maps.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1088/3049-4761/adf115
- OA Status
- hybrid
- References
- 27
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4413403461
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4413403461Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1088/3049-4761/adf115Digital Object Identifier
- Title
-
Reduced-order modeling and classification of hydrodynamic pattern formation in gravure printingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-08-21Full publication date if available
- Authors
-
Pauline Brumm, Steven L. Brunton, Isabel ScherlList of authors in order
- Landing page
-
https://doi.org/10.1088/3049-4761/adf115Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1088/3049-4761/adf115Direct OA link when available
- Concepts
-
Order (exchange), Computer science, Process engineering, Engineering drawing, Materials science, Engineering, Business, FinanceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
27Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4413403461 |
|---|---|
| doi | https://doi.org/10.1088/3049-4761/adf115 |
| ids.doi | https://doi.org/10.1088/3049-4761/adf115 |
| ids.openalex | https://openalex.org/W4413403461 |
| fwci | 0.0 |
| type | article |
| title | Reduced-order modeling and classification of hydrodynamic pattern formation in gravure printing |
| awards[0].id | https://openalex.org/G7250025176 |
| awards[0].funder_id | https://openalex.org/F4320320879 |
| awards[0].display_name | |
| awards[0].funder_award_id | 265191195 |
| awards[0].funder_display_name | Deutsche Forschungsgemeinschaft |
| biblio.issue | 1 |
| biblio.volume | 1 |
| biblio.last_page | 015005 |
| biblio.first_page | 015005 |
| topics[0].id | https://openalex.org/T10481 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9961000084877014 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1704 |
| topics[0].subfield.display_name | Computer Graphics and Computer-Aided Design |
| topics[0].display_name | Computer Graphics and Visualization Techniques |
| topics[1].id | https://openalex.org/T11751 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9667999744415283 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2206 |
| topics[1].subfield.display_name | Computational Mechanics |
| topics[1].display_name | Lattice Boltzmann Simulation Studies |
| topics[2].id | https://openalex.org/T11087 |
| topics[2].field.id | https://openalex.org/fields/25 |
| topics[2].field.display_name | Materials Science |
| topics[2].score | 0.9645000100135803 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2505 |
| topics[2].subfield.display_name | Materials Chemistry |
| topics[2].display_name | Solidification and crystal growth phenomena |
| funders[0].id | https://openalex.org/F4320306077 |
| funders[0].ror | https://ror.org/04sm5zn07 |
| funders[0].display_name | Boeing |
| funders[1].id | https://openalex.org/F4320320879 |
| funders[1].ror | https://ror.org/018mejw64 |
| funders[1].display_name | Deutsche Forschungsgemeinschaft |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C182306322 |
| concepts[0].level | 2 |
| concepts[0].score | 0.5266513824462891 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1779371 |
| concepts[0].display_name | Order (exchange) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.3888915479183197 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C21880701 |
| concepts[2].level | 1 |
| concepts[2].score | 0.3316996097564697 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2144042 |
| concepts[2].display_name | Process engineering |
| concepts[3].id | https://openalex.org/C199639397 |
| concepts[3].level | 1 |
| concepts[3].score | 0.32966774702072144 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1788588 |
| concepts[3].display_name | Engineering drawing |
| concepts[4].id | https://openalex.org/C192562407 |
| concepts[4].level | 0 |
| concepts[4].score | 0.32683706283569336 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[4].display_name | Materials science |
| concepts[5].id | https://openalex.org/C127413603 |
| concepts[5].level | 0 |
| concepts[5].score | 0.2463778257369995 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[5].display_name | Engineering |
| concepts[6].id | https://openalex.org/C144133560 |
| concepts[6].level | 0 |
| concepts[6].score | 0.1405538022518158 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q4830453 |
| concepts[6].display_name | Business |
| concepts[7].id | https://openalex.org/C10138342 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[7].display_name | Finance |
| keywords[0].id | https://openalex.org/keywords/order |
| keywords[0].score | 0.5266513824462891 |
| keywords[0].display_name | Order (exchange) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.3888915479183197 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/process-engineering |
| keywords[2].score | 0.3316996097564697 |
| keywords[2].display_name | Process engineering |
| keywords[3].id | https://openalex.org/keywords/engineering-drawing |
| keywords[3].score | 0.32966774702072144 |
| keywords[3].display_name | Engineering drawing |
| keywords[4].id | https://openalex.org/keywords/materials-science |
| keywords[4].score | 0.32683706283569336 |
| keywords[4].display_name | Materials science |
| keywords[5].id | https://openalex.org/keywords/engineering |
| keywords[5].score | 0.2463778257369995 |
| keywords[5].display_name | Engineering |
| keywords[6].id | https://openalex.org/keywords/business |
| keywords[6].score | 0.1405538022518158 |
| keywords[6].display_name | Business |
| language | en |
| locations[0].id | doi:10.1088/3049-4761/adf115 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S5407047273 |
| locations[0].source.issn | 3049-4761 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 3049-4761 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Machine Learning Engineering |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Machine Learning: Engineering |
| locations[0].landing_page_url | https://doi.org/10.1088/3049-4761/adf115 |
| locations[1].id | pmh:oai:tubiblio.ulb.tu-darmstadt.de:156897 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4377196390 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | TUbilio (Technical University of Darmstadt) |
| locations[1].source.host_organization | https://openalex.org/I31512782 |
| locations[1].source.host_organization_name | Technical University of Darmstadt |
| locations[1].source.host_organization_lineage | https://openalex.org/I31512782 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | PeerReviewed |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://tubiblio.ulb.tu-darmstadt.de/view/person/Rothmann-Brumm=3APauline=3A=3A.html> |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5054090701 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8220-0676 |
| authorships[0].author.display_name | Pauline Brumm |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pauline Rothmann-Brumm |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5062653961 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6565-5118 |
| authorships[1].author.display_name | Steven L. Brunton |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Steven L Brunton |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5008384567 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0781-8863 |
| authorships[2].author.display_name | Isabel Scherl |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Isabel Scherl |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1088/3049-4761/adf115 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Reduced-order modeling and classification of hydrodynamic pattern formation in gravure printing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10481 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9961000084877014 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1704 |
| primary_topic.subfield.display_name | Computer Graphics and Computer-Aided Design |
| primary_topic.display_name | Computer Graphics and Visualization Techniques |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W4404995717, https://openalex.org/W2016187641, https://openalex.org/W4404725684, https://openalex.org/W4413159334, https://openalex.org/W4246450666, https://openalex.org/W4388998267, https://openalex.org/W4409278740 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1088/3049-4761/adf115 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S5407047273 |
| best_oa_location.source.issn | 3049-4761 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 3049-4761 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Machine Learning Engineering |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Machine Learning: Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1088/3049-4761/adf115 |
| primary_location.id | doi:10.1088/3049-4761/adf115 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S5407047273 |
| primary_location.source.issn | 3049-4761 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 3049-4761 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Machine Learning Engineering |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Machine Learning: Engineering |
| primary_location.landing_page_url | https://doi.org/10.1088/3049-4761/adf115 |
| publication_date | 2025-08-21 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2086126894, https://openalex.org/W3043493286, https://openalex.org/W2079035993, https://openalex.org/W2973119841, https://openalex.org/W4223507605, https://openalex.org/W4309775632, https://openalex.org/W4385337096, https://openalex.org/W2131624176, https://openalex.org/W4246945957, https://openalex.org/W2004716724, https://openalex.org/W2899731896, https://openalex.org/W4390950220, https://openalex.org/W1816270601, https://openalex.org/W3184985427, https://openalex.org/W4280489497, https://openalex.org/W4412293066, https://openalex.org/W2130259898, https://openalex.org/W4286781802, https://openalex.org/W6945761246, https://openalex.org/W6966666678, https://openalex.org/W2117756735, https://openalex.org/W2963448313, https://openalex.org/W6929163400, https://openalex.org/W6923482884, https://openalex.org/W6966849170, https://openalex.org/W2963163009, https://openalex.org/W4323665982 |
| referenced_works_count | 27 |
| abstract_inverted_index.A | 105, 136 |
| abstract_inverted_index.a | 34, 73, 119, 208, 219, 226 |
| abstract_inverted_index.26 | 108 |
| abstract_inverted_index.It | 89 |
| abstract_inverted_index.We | 68, 174 |
| abstract_inverted_index.an | 53 |
| abstract_inverted_index.as | 122 |
| abstract_inverted_index.be | 264, 279 |
| abstract_inverted_index.by | 118, 159, 229 |
| abstract_inverted_index.in | 4, 286 |
| abstract_inverted_index.is | 17, 50, 140, 191, 207 |
| abstract_inverted_index.of | 33, 47, 77, 84, 93, 107, 111, 146, 155, 178, 222, 238, 248, 271, 289 |
| abstract_inverted_index.on | 59, 170, 214 |
| abstract_inverted_index.or | 42, 127, 185 |
| abstract_inverted_index.to | 19, 25, 30, 51, 142, 151, 193, 241, 254, 266, 281 |
| abstract_inverted_index.we | 257 |
| abstract_inverted_index.000 | 131 |
| abstract_inverted_index.3%, | 223 |
| abstract_inverted_index.5%, | 242 |
| abstract_inverted_index.7%. | 230 |
| abstract_inverted_index.864 | 130 |
| abstract_inverted_index.880 | 109 |
| abstract_inverted_index.90% | 253 |
| abstract_inverted_index.The | 45, 203 |
| abstract_inverted_index.aim | 46 |
| abstract_inverted_index.and | 6, 24, 65, 97, 150, 161, 200, 274 |
| abstract_inverted_index.are | 9, 134, 168 |
| abstract_inverted_index.but | 243 |
| abstract_inverted_index.can | 263, 278 |
| abstract_inverted_index.dot | 123 |
| abstract_inverted_index.for | 101 |
| abstract_inverted_index.how | 259, 275 |
| abstract_inverted_index.not | 11, 186 |
| abstract_inverted_index.the | 31, 48, 70, 91, 102, 112, 144, 147, 153, 156, 171, 176, 195, 235, 239, 246, 249, 260, 268, 276, 282, 287 |
| abstract_inverted_index.use | 69 |
| abstract_inverted_index.94%. | 255 |
| abstract_inverted_index.Data | 231 |
| abstract_inverted_index.also | 244 |
| abstract_inverted_index.been | 116 |
| abstract_inverted_index.best | 204 |
| abstract_inverted_index.data | 198, 201, 217 |
| abstract_inverted_index.fast | 187 |
| abstract_inverted_index.find | 143 |
| abstract_inverted_index.form | 288 |
| abstract_inverted_index.from | 61, 252 |
| abstract_inverted_index.full | 157 |
| abstract_inverted_index.have | 115 |
| abstract_inverted_index.like | 37 |
| abstract_inverted_index.test | 220, 236 |
| abstract_inverted_index.tune | 26 |
| abstract_inverted_index.used | 141, 192, 265 |
| abstract_inverted_index.with | 218 |
| abstract_inverted_index.(97%) | 133 |
| abstract_inverted_index.(FFT) | 190 |
| abstract_inverted_index.(kNN) | 211 |
| abstract_inverted_index.based | 58 |
| abstract_inverted_index.class | 251, 270 |
| abstract_inverted_index.data. | 173 |
| abstract_inverted_index.error | 221, 237 |
| abstract_inverted_index.first | 103 |
| abstract_inverted_index.fully | 12 |
| abstract_inverted_index.human | 120, 227 |
| abstract_inverted_index.image | 75 |
| abstract_inverted_index.large | 74 |
| abstract_inverted_index.maps. | 291 |
| abstract_inverted_index.mixed | 125, 250 |
| abstract_inverted_index.model | 206 |
| abstract_inverted_index.modes | 145 |
| abstract_inverted_index.needs | 32 |
| abstract_inverted_index.paper | 49 |
| abstract_inverted_index.shows | 81 |
| abstract_inverted_index.still | 10 |
| abstract_inverted_index.time. | 104 |
| abstract_inverted_index.total | 106 |
| abstract_inverted_index.types | 83 |
| abstract_inverted_index.value | 138 |
| abstract_inverted_index.which | 80, 224 |
| abstract_inverted_index.HYPA-p | 71, 113 |
| abstract_inverted_index.effect | 177 |
| abstract_inverted_index.finger | 128 |
| abstract_inverted_index.images | 110, 132, 149, 273 |
| abstract_inverted_index.models | 262 |
| abstract_inverted_index.recall | 247 |
| abstract_inverted_index.reduce | 152 |
| abstract_inverted_index.regime | 290 |
| abstract_inverted_index.Fourier | 188 |
| abstract_inverted_index.achieve | 20 |
| abstract_inverted_index.choice, | 183 |
| abstract_inverted_index.coating | 7 |
| abstract_inverted_index.dataset | 76, 114, 158 |
| abstract_inverted_index.develop | 52 |
| abstract_inverted_index.enables | 90 |
| abstract_inverted_index.images, | 79, 197 |
| abstract_inverted_index.labeled | 117, 148, 196 |
| abstract_inverted_index.machine | 63, 164 |
| abstract_inverted_index.methods | 60 |
| abstract_inverted_index.pattern | 1, 55, 86, 269 |
| abstract_inverted_index.predict | 267 |
| abstract_inverted_index.printed | 22, 27, 38, 99 |
| abstract_inverted_index.process | 95, 284 |
| abstract_inverted_index.several | 179 |
| abstract_inverted_index.trained | 169, 213, 261 |
| abstract_inverted_index.various | 82 |
| abstract_inverted_index.whether | 184 |
| abstract_inverted_index.Finally, | 256 |
| abstract_inverted_index.However, | 14 |
| abstract_inverted_index.Selected | 163 |
| abstract_inverted_index.dataset, | 72 |
| abstract_inverted_index.factors, | 180 |
| abstract_inverted_index.learning | 64, 165 |
| abstract_inverted_index.neighbor | 210 |
| abstract_inverted_index.observer | 121, 228 |
| abstract_inverted_index.patterns | 28, 100 |
| abstract_inverted_index.printing | 5, 94, 283 |
| abstract_inverted_index.products | 23 |
| abstract_inverted_index.singular | 137 |
| abstract_inverted_index.slightly | 233 |
| abstract_inverted_index.specific | 35 |
| abstract_inverted_index.according | 29 |
| abstract_inverted_index.algorithm | 57 |
| abstract_inverted_index.automated | 54 |
| abstract_inverted_index.balancing | 232 |
| abstract_inverted_index.essential | 18 |
| abstract_inverted_index.formation | 2, 87 |
| abstract_inverted_index.graphical | 40 |
| abstract_inverted_index.including | 181 |
| abstract_inverted_index.increases | 234, 245 |
| abstract_inverted_index.k-nearest | 209 |
| abstract_inverted_index.kNN-model | 240 |
| abstract_inverted_index.modeling. | 67 |
| abstract_inverted_index.patterns, | 124, 126 |
| abstract_inverted_index.patterns; | 129 |
| abstract_inverted_index.phenomena | 3 |
| abstract_inverted_index.printing, | 41 |
| abstract_inverted_index.printing. | 44 |
| abstract_inverted_index.processes | 8 |
| abstract_inverted_index.resulting | 98 |
| abstract_inverted_index.transform | 189 |
| abstract_inverted_index.unlabeled | 272 |
| abstract_inverted_index.balancing, | 199 |
| abstract_inverted_index.biomedical | 43 |
| abstract_inverted_index.classifier | 182, 212 |
| abstract_inverted_index.correlated | 280 |
| abstract_inverted_index.parameters | 96 |
| abstract_inverted_index.performing | 205 |
| abstract_inverted_index.phenomena. | 88 |
| abstract_inverted_index.preprocess | 194 |
| abstract_inverted_index.supervised | 62 |
| abstract_inverted_index.techniques | 167 |
| abstract_inverted_index.truncation | 160 |
| abstract_inverted_index.unlabeled. | 135 |
| abstract_inverted_index.application | 36 |
| abstract_inverted_index.correlation | 92 |
| abstract_inverted_index.demonstrate | 258 |
| abstract_inverted_index.fundamental | 15 |
| abstract_inverted_index.investigate | 175 |
| abstract_inverted_index.outperforms | 225 |
| abstract_inverted_index.parameters, | 285 |
| abstract_inverted_index.predictions | 277 |
| abstract_inverted_index.projection. | 162 |
| abstract_inverted_index.unbalanced, | 215 |
| abstract_inverted_index.understood. | 13 |
| abstract_inverted_index.Hydrodynamic | 0 |
| abstract_inverted_index.electronics, | 39 |
| abstract_inverted_index.high-quality | 21 |
| abstract_inverted_index.hydrodynamic | 85 |
| abstract_inverted_index.decomposition | 139 |
| abstract_inverted_index.reduced-order | 66, 172 |
| abstract_inverted_index.understanding | 16 |
| abstract_inverted_index.classification | 56, 166 |
| abstract_inverted_index.dimensionality | 154 |
| abstract_inverted_index.normalization. | 202 |
| abstract_inverted_index.FFT-transformed | 216 |
| abstract_inverted_index.gravure-printed | 78 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.52856884 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |