Refined and refined harmonic Jacobi--Davidson methods for computing several GSVD components of a large regular matrix pair Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2309.17266
Three refined and refined harmonic extraction-based Jacobi--Davidson (JD) type methods are proposed, and their thick-restart algorithms with deflation and purgation are developed to compute several generalized singular value decomposition (GSVD) components of a large regular matrix pair. The new methods are called refined cross product-free (RCPF), refined cross product-free harmonic (RCPF-harmonic) and refined inverse-free harmonic (RIF-harmonic) JDGSVD algorithms, abbreviated as RCPF-JDGSVD, RCPF-HJDGSVD and RIF-HJDGSVD, respectively. The new JDGSVD methods are more efficient than the corresponding standard and harmonic extraction-based JDSVD methods proposed previously by the authors, and can overcome the erratic behavior and intrinsic possible non-convergence of the latter ones. Numerical experiments illustrate that RCPF-JDGSVD performs better for the computation of extreme GSVD components while RCPF-HJDGSVD and RIF-HJDGSVD suit better for that of interior GSVD components.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2309.17266
- https://arxiv.org/pdf/2309.17266
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387294315
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387294315Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2309.17266Digital Object Identifier
- Title
-
Refined and refined harmonic Jacobi--Davidson methods for computing several GSVD components of a large regular matrix pairWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-09-29Full publication date if available
- Authors
-
Jinzhi Huang, Zhongxiao JiaList of authors in order
- Landing page
-
https://arxiv.org/abs/2309.17266Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2309.17266Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2309.17266Direct OA link when available
- Concepts
-
Computation, Harmonic, Computer science, Convergence (economics), Singular value decomposition, Matrix (chemical analysis), Applied mathematics, Algorithm, Mathematics, Physics, Economic growth, Composite material, Economics, Materials science, Quantum mechanicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387294315 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2309.17266 |
| ids.doi | https://doi.org/10.48550/arxiv.2309.17266 |
| ids.openalex | https://openalex.org/W4387294315 |
| fwci | 0.0 |
| type | preprint |
| title | Refined and refined harmonic Jacobi--Davidson methods for computing several GSVD components of a large regular matrix pair |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10792 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Matrix Theory and Algorithms |
| topics[1].id | https://openalex.org/T10739 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9937999844551086 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3107 |
| topics[1].subfield.display_name | Atomic and Molecular Physics, and Optics |
| topics[1].display_name | Electromagnetic Scattering and Analysis |
| topics[2].id | https://openalex.org/T11263 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9904000163078308 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Electromagnetic Simulation and Numerical Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C45374587 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6377760171890259 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q12525525 |
| concepts[0].display_name | Computation |
| concepts[1].id | https://openalex.org/C127934551 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6363290548324585 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1148098 |
| concepts[1].display_name | Harmonic |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5369712114334106 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2777303404 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5248213410377502 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q759757 |
| concepts[3].display_name | Convergence (economics) |
| concepts[4].id | https://openalex.org/C22789450 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4870874881744385 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q420904 |
| concepts[4].display_name | Singular value decomposition |
| concepts[5].id | https://openalex.org/C106487976 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4449100196361542 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q685816 |
| concepts[5].display_name | Matrix (chemical analysis) |
| concepts[6].id | https://openalex.org/C28826006 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4270585775375366 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q33521 |
| concepts[6].display_name | Applied mathematics |
| concepts[7].id | https://openalex.org/C11413529 |
| concepts[7].level | 1 |
| concepts[7].score | 0.42682433128356934 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[7].display_name | Algorithm |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.3000863790512085 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C121332964 |
| concepts[9].level | 0 |
| concepts[9].score | 0.14086365699768066 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[9].display_name | Physics |
| concepts[10].id | https://openalex.org/C50522688 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[10].display_name | Economic growth |
| concepts[11].id | https://openalex.org/C159985019 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[11].display_name | Composite material |
| concepts[12].id | https://openalex.org/C162324750 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[12].display_name | Economics |
| concepts[13].id | https://openalex.org/C192562407 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[13].display_name | Materials science |
| concepts[14].id | https://openalex.org/C62520636 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[14].display_name | Quantum mechanics |
| keywords[0].id | https://openalex.org/keywords/computation |
| keywords[0].score | 0.6377760171890259 |
| keywords[0].display_name | Computation |
| keywords[1].id | https://openalex.org/keywords/harmonic |
| keywords[1].score | 0.6363290548324585 |
| keywords[1].display_name | Harmonic |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5369712114334106 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/convergence |
| keywords[3].score | 0.5248213410377502 |
| keywords[3].display_name | Convergence (economics) |
| keywords[4].id | https://openalex.org/keywords/singular-value-decomposition |
| keywords[4].score | 0.4870874881744385 |
| keywords[4].display_name | Singular value decomposition |
| keywords[5].id | https://openalex.org/keywords/matrix |
| keywords[5].score | 0.4449100196361542 |
| keywords[5].display_name | Matrix (chemical analysis) |
| keywords[6].id | https://openalex.org/keywords/applied-mathematics |
| keywords[6].score | 0.4270585775375366 |
| keywords[6].display_name | Applied mathematics |
| keywords[7].id | https://openalex.org/keywords/algorithm |
| keywords[7].score | 0.42682433128356934 |
| keywords[7].display_name | Algorithm |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.3000863790512085 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/physics |
| keywords[9].score | 0.14086365699768066 |
| keywords[9].display_name | Physics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2309.17266 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2309.17266 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2309.17266 |
| locations[1].id | doi:10.48550/arxiv.2309.17266 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article-journal |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2309.17266 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5050771143 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Jinzhi Huang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Huang, Jinzhi |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5075378610 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9761-8517 |
| authorships[1].author.display_name | Zhongxiao Jia |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Jia, Zhongxiao |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2309.17266 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Refined and refined harmonic Jacobi--Davidson methods for computing several GSVD components of a large regular matrix pair |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10792 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Matrix Theory and Algorithms |
| related_works | https://openalex.org/W3121932492, https://openalex.org/W4232638561, https://openalex.org/W1997544008, https://openalex.org/W1607100495, https://openalex.org/W3004137470, https://openalex.org/W131378092, https://openalex.org/W1598328844, https://openalex.org/W4221140916, https://openalex.org/W3087237336, https://openalex.org/W4287663927 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2309.17266 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2309.17266 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2309.17266 |
| primary_location.id | pmh:oai:arXiv.org:2309.17266 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2309.17266 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2309.17266 |
| publication_date | 2023-09-29 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 32 |
| abstract_inverted_index.as | 59 |
| abstract_inverted_index.by | 83 |
| abstract_inverted_index.of | 31, 96, 110, 122 |
| abstract_inverted_index.to | 22 |
| abstract_inverted_index.The | 37, 65 |
| abstract_inverted_index.and | 2, 12, 18, 51, 62, 76, 86, 92, 116 |
| abstract_inverted_index.are | 10, 20, 40, 69 |
| abstract_inverted_index.can | 87 |
| abstract_inverted_index.for | 107, 120 |
| abstract_inverted_index.new | 38, 66 |
| abstract_inverted_index.the | 73, 84, 89, 97, 108 |
| abstract_inverted_index.(JD) | 7 |
| abstract_inverted_index.GSVD | 112, 124 |
| abstract_inverted_index.more | 70 |
| abstract_inverted_index.suit | 118 |
| abstract_inverted_index.than | 72 |
| abstract_inverted_index.that | 103, 121 |
| abstract_inverted_index.type | 8 |
| abstract_inverted_index.with | 16 |
| abstract_inverted_index.JDSVD | 79 |
| abstract_inverted_index.Three | 0 |
| abstract_inverted_index.cross | 43, 47 |
| abstract_inverted_index.large | 33 |
| abstract_inverted_index.ones. | 99 |
| abstract_inverted_index.pair. | 36 |
| abstract_inverted_index.their | 13 |
| abstract_inverted_index.value | 27 |
| abstract_inverted_index.while | 114 |
| abstract_inverted_index.(GSVD) | 29 |
| abstract_inverted_index.JDGSVD | 56, 67 |
| abstract_inverted_index.better | 106, 119 |
| abstract_inverted_index.called | 41 |
| abstract_inverted_index.latter | 98 |
| abstract_inverted_index.matrix | 35 |
| abstract_inverted_index.(RCPF), | 45 |
| abstract_inverted_index.compute | 23 |
| abstract_inverted_index.erratic | 90 |
| abstract_inverted_index.extreme | 111 |
| abstract_inverted_index.methods | 9, 39, 68, 80 |
| abstract_inverted_index.refined | 1, 3, 42, 46, 52 |
| abstract_inverted_index.regular | 34 |
| abstract_inverted_index.several | 24 |
| abstract_inverted_index.authors, | 85 |
| abstract_inverted_index.behavior | 91 |
| abstract_inverted_index.harmonic | 4, 49, 54, 77 |
| abstract_inverted_index.interior | 123 |
| abstract_inverted_index.overcome | 88 |
| abstract_inverted_index.performs | 105 |
| abstract_inverted_index.possible | 94 |
| abstract_inverted_index.proposed | 81 |
| abstract_inverted_index.singular | 26 |
| abstract_inverted_index.standard | 75 |
| abstract_inverted_index.Numerical | 100 |
| abstract_inverted_index.deflation | 17 |
| abstract_inverted_index.developed | 21 |
| abstract_inverted_index.efficient | 71 |
| abstract_inverted_index.intrinsic | 93 |
| abstract_inverted_index.proposed, | 11 |
| abstract_inverted_index.purgation | 19 |
| abstract_inverted_index.algorithms | 15 |
| abstract_inverted_index.components | 30, 113 |
| abstract_inverted_index.illustrate | 102 |
| abstract_inverted_index.previously | 82 |
| abstract_inverted_index.RCPF-JDGSVD | 104 |
| abstract_inverted_index.RIF-HJDGSVD | 117 |
| abstract_inverted_index.abbreviated | 58 |
| abstract_inverted_index.algorithms, | 57 |
| abstract_inverted_index.components. | 125 |
| abstract_inverted_index.computation | 109 |
| abstract_inverted_index.experiments | 101 |
| abstract_inverted_index.generalized | 25 |
| abstract_inverted_index.RCPF-HJDGSVD | 61, 115 |
| abstract_inverted_index.RCPF-JDGSVD, | 60 |
| abstract_inverted_index.RIF-HJDGSVD, | 63 |
| abstract_inverted_index.inverse-free | 53 |
| abstract_inverted_index.product-free | 44, 48 |
| abstract_inverted_index.corresponding | 74 |
| abstract_inverted_index.decomposition | 28 |
| abstract_inverted_index.respectively. | 64 |
| abstract_inverted_index.thick-restart | 14 |
| abstract_inverted_index.(RIF-harmonic) | 55 |
| abstract_inverted_index.(RCPF-harmonic) | 50 |
| abstract_inverted_index.non-convergence | 95 |
| abstract_inverted_index.Jacobi--Davidson | 6 |
| abstract_inverted_index.extraction-based | 5, 78 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.2295803 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |