Region-Aware CAM: High-Resolution Weakly-Supervised Defect Segmentation via Salient Region Perception Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.22866
Surface defect detection plays a critical role in industrial quality inspection. Recent advances in artificial intelligence have significantly enhanced the automation level of detection processes. However, conventional semantic segmentation and object detection models heavily rely on large-scale annotated datasets, which conflicts with the practical requirements of defect detection tasks. This paper proposes a novel weakly supervised semantic segmentation framework comprising two key components: a region-aware class activation map (CAM) and pseudo-label training. To address the limitations of existing CAM methods, especially low-resolution thermal maps, and insufficient detail preservation, we introduce filtering-guided backpropagation (FGBP), which refines target regions by filtering gradient magnitudes to identify areas with higher relevance to defects. Building upon this, we further develop a region-aware weighted module to enhance spatial precision. Finally, pseudo-label segmentation is implemented to refine the model's performance iteratively. Comprehensive experiments on industrial defect datasets demonstrate the superiority of our method. The proposed framework effectively bridges the gap between weakly supervised learning and high-precision defect segmentation, offering a practical solution for resource-constrained industrial scenarios.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.22866
- https://arxiv.org/pdf/2506.22866
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416508502
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416508502Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.22866Digital Object Identifier
- Title
-
Region-Aware CAM: High-Resolution Weakly-Supervised Defect Segmentation via Salient Region PerceptionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-28Full publication date if available
- Authors
-
Hangcheng Dong, Lu Zou, Bingguo Liu, Guodong LiuList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.22866Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.22866Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.22866Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416508502 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.22866 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.22866 |
| ids.openalex | https://openalex.org/W4416508502 |
| fwci | |
| type | preprint |
| title | Region-Aware CAM: High-Resolution Weakly-Supervised Defect Segmentation via Salient Region Perception |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.22866 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.22866 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.22866 |
| locations[1].id | doi:10.48550/arxiv.2506.22866 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.22866 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5029378855 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4880-6762 |
| authorships[0].author.display_name | Hangcheng Dong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Dong, Hang-Cheng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100938712 |
| authorships[1].author.orcid | https://orcid.org/0009-0008-2354-6002 |
| authorships[1].author.display_name | Lu Zou |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zou, Lu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5064288905 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Bingguo Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Liu, Bingguo |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100452278 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3173-6462 |
| authorships[3].author.display_name | Guodong Liu |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Liu, Guodong |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.22866 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Region-Aware CAM: High-Resolution Weakly-Supervised Defect Segmentation via Salient Region Perception |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T16:05:42.392888 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.22866 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.22866 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.22866 |
| primary_location.id | pmh:oai:arXiv.org:2506.22866 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.22866 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.22866 |
| publication_date | 2025-06-28 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 52, 63, 115, 162 |
| abstract_inverted_index.To | 72 |
| abstract_inverted_index.by | 97 |
| abstract_inverted_index.in | 7, 13 |
| abstract_inverted_index.is | 126 |
| abstract_inverted_index.of | 22, 45, 76, 143 |
| abstract_inverted_index.on | 35, 136 |
| abstract_inverted_index.to | 101, 107, 119, 128 |
| abstract_inverted_index.we | 88, 112 |
| abstract_inverted_index.CAM | 78 |
| abstract_inverted_index.The | 146 |
| abstract_inverted_index.and | 29, 69, 84, 157 |
| abstract_inverted_index.for | 165 |
| abstract_inverted_index.gap | 152 |
| abstract_inverted_index.key | 61 |
| abstract_inverted_index.map | 67 |
| abstract_inverted_index.our | 144 |
| abstract_inverted_index.the | 19, 42, 74, 130, 141, 151 |
| abstract_inverted_index.two | 60 |
| abstract_inverted_index.This | 49 |
| abstract_inverted_index.have | 16 |
| abstract_inverted_index.rely | 34 |
| abstract_inverted_index.role | 6 |
| abstract_inverted_index.upon | 110 |
| abstract_inverted_index.with | 41, 104 |
| abstract_inverted_index.(CAM) | 68 |
| abstract_inverted_index.areas | 103 |
| abstract_inverted_index.class | 65 |
| abstract_inverted_index.level | 21 |
| abstract_inverted_index.maps, | 83 |
| abstract_inverted_index.novel | 53 |
| abstract_inverted_index.paper | 50 |
| abstract_inverted_index.plays | 3 |
| abstract_inverted_index.this, | 111 |
| abstract_inverted_index.which | 39, 93 |
| abstract_inverted_index.Recent | 11 |
| abstract_inverted_index.defect | 1, 46, 138, 159 |
| abstract_inverted_index.detail | 86 |
| abstract_inverted_index.higher | 105 |
| abstract_inverted_index.models | 32 |
| abstract_inverted_index.module | 118 |
| abstract_inverted_index.object | 30 |
| abstract_inverted_index.refine | 129 |
| abstract_inverted_index.target | 95 |
| abstract_inverted_index.tasks. | 48 |
| abstract_inverted_index.weakly | 54, 154 |
| abstract_inverted_index.(FGBP), | 92 |
| abstract_inverted_index.Surface | 0 |
| abstract_inverted_index.address | 73 |
| abstract_inverted_index.between | 153 |
| abstract_inverted_index.bridges | 150 |
| abstract_inverted_index.develop | 114 |
| abstract_inverted_index.enhance | 120 |
| abstract_inverted_index.further | 113 |
| abstract_inverted_index.heavily | 33 |
| abstract_inverted_index.method. | 145 |
| abstract_inverted_index.model's | 131 |
| abstract_inverted_index.quality | 9 |
| abstract_inverted_index.refines | 94 |
| abstract_inverted_index.regions | 96 |
| abstract_inverted_index.spatial | 121 |
| abstract_inverted_index.thermal | 82 |
| abstract_inverted_index.Building | 109 |
| abstract_inverted_index.Finally, | 123 |
| abstract_inverted_index.However, | 25 |
| abstract_inverted_index.advances | 12 |
| abstract_inverted_index.critical | 5 |
| abstract_inverted_index.datasets | 139 |
| abstract_inverted_index.defects. | 108 |
| abstract_inverted_index.enhanced | 18 |
| abstract_inverted_index.existing | 77 |
| abstract_inverted_index.gradient | 99 |
| abstract_inverted_index.identify | 102 |
| abstract_inverted_index.learning | 156 |
| abstract_inverted_index.methods, | 79 |
| abstract_inverted_index.offering | 161 |
| abstract_inverted_index.proposed | 147 |
| abstract_inverted_index.proposes | 51 |
| abstract_inverted_index.semantic | 27, 56 |
| abstract_inverted_index.solution | 164 |
| abstract_inverted_index.weighted | 117 |
| abstract_inverted_index.annotated | 37 |
| abstract_inverted_index.conflicts | 40 |
| abstract_inverted_index.datasets, | 38 |
| abstract_inverted_index.detection | 2, 23, 31, 47 |
| abstract_inverted_index.filtering | 98 |
| abstract_inverted_index.framework | 58, 148 |
| abstract_inverted_index.introduce | 89 |
| abstract_inverted_index.practical | 43, 163 |
| abstract_inverted_index.relevance | 106 |
| abstract_inverted_index.training. | 71 |
| abstract_inverted_index.activation | 66 |
| abstract_inverted_index.artificial | 14 |
| abstract_inverted_index.automation | 20 |
| abstract_inverted_index.comprising | 59 |
| abstract_inverted_index.especially | 80 |
| abstract_inverted_index.industrial | 8, 137, 167 |
| abstract_inverted_index.magnitudes | 100 |
| abstract_inverted_index.precision. | 122 |
| abstract_inverted_index.processes. | 24 |
| abstract_inverted_index.scenarios. | 168 |
| abstract_inverted_index.supervised | 55, 155 |
| abstract_inverted_index.components: | 62 |
| abstract_inverted_index.demonstrate | 140 |
| abstract_inverted_index.effectively | 149 |
| abstract_inverted_index.experiments | 135 |
| abstract_inverted_index.implemented | 127 |
| abstract_inverted_index.inspection. | 10 |
| abstract_inverted_index.large-scale | 36 |
| abstract_inverted_index.limitations | 75 |
| abstract_inverted_index.performance | 132 |
| abstract_inverted_index.superiority | 142 |
| abstract_inverted_index.conventional | 26 |
| abstract_inverted_index.insufficient | 85 |
| abstract_inverted_index.intelligence | 15 |
| abstract_inverted_index.iteratively. | 133 |
| abstract_inverted_index.pseudo-label | 70, 124 |
| abstract_inverted_index.region-aware | 64, 116 |
| abstract_inverted_index.requirements | 44 |
| abstract_inverted_index.segmentation | 28, 57, 125 |
| abstract_inverted_index.Comprehensive | 134 |
| abstract_inverted_index.preservation, | 87 |
| abstract_inverted_index.segmentation, | 160 |
| abstract_inverted_index.significantly | 17 |
| abstract_inverted_index.high-precision | 158 |
| abstract_inverted_index.low-resolution | 81 |
| abstract_inverted_index.backpropagation | 91 |
| abstract_inverted_index.filtering-guided | 90 |
| abstract_inverted_index.resource-constrained | 166 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |