Regional Forest Structure Evaluation Model Based on Remote Sensing and Field Survey Data Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/f15030533
The assessment of a forest’s structure is pivotal in guiding effective forest management, conservation efforts, and ensuring sustainable development. However, traditional evaluation methods often focus on isolated forest parameters and incur substantial data acquisition costs. To address these limitations, this study introduces a cost-effective and innovative evaluation model that incorporates remote sensing imagery and machine learning algorithms. This model holistically considers the forest composition, the tree age structure, and spatial configuration. Using a comprehensive approach, the forest structure in Longquan City was evaluated at the stand level and categorized into three distinct categories: good, moderate, and poor. The construction of this evaluation model drew upon multiple data sources, namely Sentinel-2 imagery, digital elevation models (DEMs), and forest resource planning and design survey data. The model employed the Recursive Feature Elimination with Cross-Validation (RFECV) method for feature selection, alongside various machine learning algorithms. The key findings from this research are summarized as follows: The application of the RFECV method proved effective in eliminating irrelevant factors, reducing data dimensionality and, subsequently, enhancing the model’s generalizability; among the tested machine learning algorithms, the CatBoost model emerged as the most accurate and stable across all the datasets; specifically, the CatBoost model achieved an impressive overall accuracy of 88.07%, a kappa coefficient of 0.6833, and a recall rate of 76.86%. These results significantly surpass the classification precision of previous methods. The forest structure assessment of Longquan City revealed notable variations in the forest quality distribution. Notably, forests classified as “good” quality comprised 11.18% of the total, while “medium” quality forests constituted the majority at 76.77%. In contrast, “poor” quality forests accounted for a relatively minor proportion of the total, at 12.05%. The distribution findings provide valuable insights for targeted forest management and conservation strategies.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/f15030533
- https://www.mdpi.com/1999-4907/15/3/533/pdf?version=1710341047
- OA Status
- gold
- Cited By
- 5
- References
- 60
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392746871
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392746871Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/f15030533Digital Object Identifier
- Title
-
Regional Forest Structure Evaluation Model Based on Remote Sensing and Field Survey DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-13Full publication date if available
- Authors
-
Shangqin Lin, Qingqing Wen, Dasheng Wu, Huajian Huang, Xinyu ZhengList of authors in order
- Landing page
-
https://doi.org/10.3390/f15030533Publisher landing page
- PDF URL
-
https://www.mdpi.com/1999-4907/15/3/533/pdf?version=1710341047Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1999-4907/15/3/533/pdf?version=1710341047Direct OA link when available
- Concepts
-
Remote sensing, Field (mathematics), Field survey, Environmental science, Environmental resource management, Geography, Computer science, Cartography, Mathematics, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
5Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
60Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392746871 |
|---|---|
| doi | https://doi.org/10.3390/f15030533 |
| ids.doi | https://doi.org/10.3390/f15030533 |
| ids.openalex | https://openalex.org/W4392746871 |
| fwci | 2.81312708 |
| type | article |
| title | Regional Forest Structure Evaluation Model Based on Remote Sensing and Field Survey Data |
| biblio.issue | 3 |
| biblio.volume | 15 |
| biblio.last_page | 533 |
| biblio.first_page | 533 |
| topics[0].id | https://openalex.org/T13890 |
| topics[0].field.id | https://openalex.org/fields/19 |
| topics[0].field.display_name | Earth and Planetary Sciences |
| topics[0].score | 0.9546999931335449 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1902 |
| topics[0].subfield.display_name | Atmospheric Science |
| topics[0].display_name | Remote Sensing and Land Use |
| topics[1].id | https://openalex.org/T13203 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.910099983215332 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2306 |
| topics[1].subfield.display_name | Global and Planetary Change |
| topics[1].display_name | Environmental Changes in China |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C62649853 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6029228568077087 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[0].display_name | Remote sensing |
| concepts[1].id | https://openalex.org/C9652623 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5705503225326538 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[1].display_name | Field (mathematics) |
| concepts[2].id | https://openalex.org/C2989343102 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5615987181663513 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1402508 |
| concepts[2].display_name | Field survey |
| concepts[3].id | https://openalex.org/C39432304 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5142320990562439 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[3].display_name | Environmental science |
| concepts[4].id | https://openalex.org/C107826830 |
| concepts[4].level | 1 |
| concepts[4].score | 0.40112847089767456 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q929380 |
| concepts[4].display_name | Environmental resource management |
| concepts[5].id | https://openalex.org/C205649164 |
| concepts[5].level | 0 |
| concepts[5].score | 0.3742326498031616 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[5].display_name | Geography |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.32387590408325195 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C58640448 |
| concepts[7].level | 1 |
| concepts[7].score | 0.21165049076080322 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[7].display_name | Cartography |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.09472370147705078 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C202444582 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[9].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/remote-sensing |
| keywords[0].score | 0.6029228568077087 |
| keywords[0].display_name | Remote sensing |
| keywords[1].id | https://openalex.org/keywords/field |
| keywords[1].score | 0.5705503225326538 |
| keywords[1].display_name | Field (mathematics) |
| keywords[2].id | https://openalex.org/keywords/field-survey |
| keywords[2].score | 0.5615987181663513 |
| keywords[2].display_name | Field survey |
| keywords[3].id | https://openalex.org/keywords/environmental-science |
| keywords[3].score | 0.5142320990562439 |
| keywords[3].display_name | Environmental science |
| keywords[4].id | https://openalex.org/keywords/environmental-resource-management |
| keywords[4].score | 0.40112847089767456 |
| keywords[4].display_name | Environmental resource management |
| keywords[5].id | https://openalex.org/keywords/geography |
| keywords[5].score | 0.3742326498031616 |
| keywords[5].display_name | Geography |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.32387590408325195 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/cartography |
| keywords[7].score | 0.21165049076080322 |
| keywords[7].display_name | Cartography |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.09472370147705078 |
| keywords[8].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.3390/f15030533 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S71324801 |
| locations[0].source.issn | 1999-4907 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1999-4907 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Forests |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1999-4907/15/3/533/pdf?version=1710341047 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Forests |
| locations[0].landing_page_url | https://doi.org/10.3390/f15030533 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5109652731 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shangqin Lin |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1284762954 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I4210134523 |
| authorships[0].affiliations[1].raw_affiliation_string | Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China |
| authorships[0].affiliations[2].raw_affiliation_string | Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China |
| authorships[0].institutions[0].id | https://openalex.org/I4210134523 |
| authorships[0].institutions[0].ror | https://ror.org/03f2n3n81 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I4210134523 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | State Forestry and Grassland Administration |
| authorships[0].institutions[1].id | https://openalex.org/I1284762954 |
| authorships[0].institutions[1].ror | https://ror.org/02vj4rn06 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I1284762954 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Zhejiang A & F University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shangqin Lin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China, Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China |
| authorships[1].author.id | https://openalex.org/A5065447493 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Qingqing Wen |
| authorships[1].affiliations[0].raw_affiliation_string | Wucheng Nanshan Provincial Nature Reserve Management Center of Zhejiang Province, Jinhua 321000, China |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Qingqing Wen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Wucheng Nanshan Provincial Nature Reserve Management Center of Zhejiang Province, Jinhua 321000, China |
| authorships[2].author.id | https://openalex.org/A5033636430 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6316-303X |
| authorships[2].author.display_name | Dasheng Wu |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210134523 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I1284762954 |
| authorships[2].affiliations[1].raw_affiliation_string | College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China |
| authorships[2].affiliations[2].raw_affiliation_string | Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China |
| authorships[2].institutions[0].id | https://openalex.org/I4210134523 |
| authorships[2].institutions[0].ror | https://ror.org/03f2n3n81 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210134523 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | State Forestry and Grassland Administration |
| authorships[2].institutions[1].id | https://openalex.org/I1284762954 |
| authorships[2].institutions[1].ror | https://ror.org/02vj4rn06 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I1284762954 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Zhejiang A & F University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dasheng Wu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China, Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China |
| authorships[3].author.id | https://openalex.org/A5035324795 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0963-1146 |
| authorships[3].author.display_name | Huajian Huang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].raw_affiliation_string | Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I1284762954 |
| authorships[3].affiliations[1].raw_affiliation_string | College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I4210134523 |
| authorships[3].affiliations[2].raw_affiliation_string | Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210134523 |
| authorships[3].institutions[0].ror | https://ror.org/03f2n3n81 |
| authorships[3].institutions[0].type | government |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210134523 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | State Forestry and Grassland Administration |
| authorships[3].institutions[1].id | https://openalex.org/I1284762954 |
| authorships[3].institutions[1].ror | https://ror.org/02vj4rn06 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I1284762954 |
| authorships[3].institutions[1].country_code | CN |
| authorships[3].institutions[1].display_name | Zhejiang A & F University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Huajian Huang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China, Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China |
| authorships[4].author.id | https://openalex.org/A5102743064 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-5360-5359 |
| authorships[4].author.display_name | Xinyu Zheng |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I1284762954 |
| authorships[4].affiliations[1].raw_affiliation_string | College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I4210134523 |
| authorships[4].affiliations[2].raw_affiliation_string | Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China |
| authorships[4].institutions[0].id | https://openalex.org/I4210134523 |
| authorships[4].institutions[0].ror | https://ror.org/03f2n3n81 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210134523 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | State Forestry and Grassland Administration |
| authorships[4].institutions[1].id | https://openalex.org/I1284762954 |
| authorships[4].institutions[1].ror | https://ror.org/02vj4rn06 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I1284762954 |
| authorships[4].institutions[1].country_code | CN |
| authorships[4].institutions[1].display_name | Zhejiang A & F University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Xinyu Zheng |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | College of Mathematics and Computer Science, Zhejiang A&F University, Hangzhou 311300, China, Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou 311300, China, Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou 311300, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1999-4907/15/3/533/pdf?version=1710341047 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Regional Forest Structure Evaluation Model Based on Remote Sensing and Field Survey Data |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13890 |
| primary_topic.field.id | https://openalex.org/fields/19 |
| primary_topic.field.display_name | Earth and Planetary Sciences |
| primary_topic.score | 0.9546999931335449 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1902 |
| primary_topic.subfield.display_name | Atmospheric Science |
| primary_topic.display_name | Remote Sensing and Land Use |
| related_works | https://openalex.org/W2121524756, https://openalex.org/W782553550, https://openalex.org/W1987967678, https://openalex.org/W2633218168, https://openalex.org/W4235897794, https://openalex.org/W2059707233, https://openalex.org/W2095126257, https://openalex.org/W2085738998, https://openalex.org/W2031511989, https://openalex.org/W1606936601 |
| cited_by_count | 5 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/f15030533 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S71324801 |
| best_oa_location.source.issn | 1999-4907 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1999-4907 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Forests |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1999-4907/15/3/533/pdf?version=1710341047 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Forests |
| best_oa_location.landing_page_url | https://doi.org/10.3390/f15030533 |
| primary_location.id | doi:10.3390/f15030533 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S71324801 |
| primary_location.source.issn | 1999-4907 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1999-4907 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Forests |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1999-4907/15/3/533/pdf?version=1710341047 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Forests |
| primary_location.landing_page_url | https://doi.org/10.3390/f15030533 |
| publication_date | 2024-03-13 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2123050220, https://openalex.org/W2015111511, https://openalex.org/W2139427406, https://openalex.org/W2060670595, https://openalex.org/W2808883217, https://openalex.org/W2964626812, https://openalex.org/W4388923137, https://openalex.org/W2004553299, https://openalex.org/W3083577680, https://openalex.org/W2756173181, https://openalex.org/W3034017633, https://openalex.org/W6802343549, https://openalex.org/W3084068254, https://openalex.org/W2999320693, https://openalex.org/W1964789567, https://openalex.org/W6839677208, https://openalex.org/W4313648815, https://openalex.org/W4385805748, https://openalex.org/W2963409776, https://openalex.org/W3020886002, https://openalex.org/W4389299112, https://openalex.org/W3123405779, https://openalex.org/W6636950212, https://openalex.org/W2089441588, https://openalex.org/W2941740761, https://openalex.org/W2011010318, https://openalex.org/W1485678107, https://openalex.org/W1964217023, https://openalex.org/W3093802357, https://openalex.org/W7023915785, https://openalex.org/W2036003376, https://openalex.org/W2078996926, https://openalex.org/W4205617034, https://openalex.org/W3121079990, https://openalex.org/W3032512766, https://openalex.org/W2942851257, https://openalex.org/W6675354045, https://openalex.org/W6750729320, https://openalex.org/W4385283179, https://openalex.org/W4283819225, https://openalex.org/W2996062047, https://openalex.org/W2964232392, https://openalex.org/W4365514200, https://openalex.org/W3118969018, https://openalex.org/W4366979849, https://openalex.org/W3089450095, https://openalex.org/W4389048300, https://openalex.org/W7047280867, https://openalex.org/W3203391618, https://openalex.org/W4388457359, https://openalex.org/W3094948551, https://openalex.org/W4379055286, https://openalex.org/W3112661396, https://openalex.org/W2101234009, https://openalex.org/W2964022491, https://openalex.org/W3196437981, https://openalex.org/W2989983865, https://openalex.org/W4285586446, https://openalex.org/W3201771732, https://openalex.org/W3186496173 |
| referenced_works_count | 60 |
| abstract_inverted_index.a | 3, 42, 72, 204, 210, 267 |
| abstract_inverted_index.In | 260 |
| abstract_inverted_index.To | 35 |
| abstract_inverted_index.an | 198 |
| abstract_inverted_index.as | 150, 183, 243 |
| abstract_inverted_index.at | 83, 258, 274 |
| abstract_inverted_index.in | 8, 78, 160, 235 |
| abstract_inverted_index.is | 6 |
| abstract_inverted_index.of | 2, 99, 154, 202, 207, 213, 222, 229, 248, 271 |
| abstract_inverted_index.on | 25 |
| abstract_inverted_index.The | 0, 97, 123, 142, 152, 225, 276 |
| abstract_inverted_index.age | 66 |
| abstract_inverted_index.all | 190 |
| abstract_inverted_index.and | 15, 29, 44, 53, 68, 87, 95, 115, 119, 187, 209, 286 |
| abstract_inverted_index.are | 148 |
| abstract_inverted_index.for | 134, 266, 282 |
| abstract_inverted_index.key | 143 |
| abstract_inverted_index.the | 61, 64, 75, 84, 126, 155, 170, 174, 179, 184, 191, 194, 219, 236, 249, 256, 272 |
| abstract_inverted_index.was | 81 |
| abstract_inverted_index.City | 80, 231 |
| abstract_inverted_index.This | 57 |
| abstract_inverted_index.and, | 167 |
| abstract_inverted_index.data | 32, 106, 165 |
| abstract_inverted_index.drew | 103 |
| abstract_inverted_index.from | 145 |
| abstract_inverted_index.into | 89 |
| abstract_inverted_index.most | 185 |
| abstract_inverted_index.rate | 212 |
| abstract_inverted_index.that | 48 |
| abstract_inverted_index.this | 39, 100, 146 |
| abstract_inverted_index.tree | 65 |
| abstract_inverted_index.upon | 104 |
| abstract_inverted_index.with | 130 |
| abstract_inverted_index.RFECV | 156 |
| abstract_inverted_index.These | 215 |
| abstract_inverted_index.Using | 71 |
| abstract_inverted_index.among | 173 |
| abstract_inverted_index.data. | 122 |
| abstract_inverted_index.focus | 24 |
| abstract_inverted_index.good, | 93 |
| abstract_inverted_index.incur | 30 |
| abstract_inverted_index.kappa | 205 |
| abstract_inverted_index.level | 86 |
| abstract_inverted_index.minor | 269 |
| abstract_inverted_index.model | 47, 58, 102, 124, 181, 196 |
| abstract_inverted_index.often | 23 |
| abstract_inverted_index.poor. | 96 |
| abstract_inverted_index.stand | 85 |
| abstract_inverted_index.study | 40 |
| abstract_inverted_index.these | 37 |
| abstract_inverted_index.three | 90 |
| abstract_inverted_index.while | 251 |
| abstract_inverted_index.11.18% | 247 |
| abstract_inverted_index.across | 189 |
| abstract_inverted_index.costs. | 34 |
| abstract_inverted_index.design | 120 |
| abstract_inverted_index.forest | 11, 27, 62, 76, 116, 226, 237, 284 |
| abstract_inverted_index.method | 133, 157 |
| abstract_inverted_index.models | 113 |
| abstract_inverted_index.namely | 108 |
| abstract_inverted_index.proved | 158 |
| abstract_inverted_index.recall | 211 |
| abstract_inverted_index.remote | 50 |
| abstract_inverted_index.stable | 188 |
| abstract_inverted_index.survey | 121 |
| abstract_inverted_index.tested | 175 |
| abstract_inverted_index.total, | 250, 273 |
| abstract_inverted_index.(DEMs), | 114 |
| abstract_inverted_index.(RFECV) | 132 |
| abstract_inverted_index.0.6833, | 208 |
| abstract_inverted_index.12.05%. | 275 |
| abstract_inverted_index.76.77%. | 259 |
| abstract_inverted_index.76.86%. | 214 |
| abstract_inverted_index.88.07%, | 203 |
| abstract_inverted_index.Feature | 128 |
| abstract_inverted_index.address | 36 |
| abstract_inverted_index.digital | 111 |
| abstract_inverted_index.emerged | 182 |
| abstract_inverted_index.feature | 135 |
| abstract_inverted_index.forests | 241, 254, 264 |
| abstract_inverted_index.guiding | 9 |
| abstract_inverted_index.imagery | 52 |
| abstract_inverted_index.machine | 54, 139, 176 |
| abstract_inverted_index.methods | 22 |
| abstract_inverted_index.notable | 233 |
| abstract_inverted_index.overall | 200 |
| abstract_inverted_index.pivotal | 7 |
| abstract_inverted_index.provide | 279 |
| abstract_inverted_index.quality | 238, 245, 253, 263 |
| abstract_inverted_index.results | 216 |
| abstract_inverted_index.sensing | 51 |
| abstract_inverted_index.spatial | 69 |
| abstract_inverted_index.surpass | 218 |
| abstract_inverted_index.various | 138 |
| abstract_inverted_index.CatBoost | 180, 195 |
| abstract_inverted_index.However, | 19 |
| abstract_inverted_index.Longquan | 79, 230 |
| abstract_inverted_index.Notably, | 240 |
| abstract_inverted_index.accuracy | 201 |
| abstract_inverted_index.accurate | 186 |
| abstract_inverted_index.achieved | 197 |
| abstract_inverted_index.distinct | 91 |
| abstract_inverted_index.efforts, | 14 |
| abstract_inverted_index.employed | 125 |
| abstract_inverted_index.ensuring | 16 |
| abstract_inverted_index.factors, | 163 |
| abstract_inverted_index.findings | 144, 278 |
| abstract_inverted_index.follows: | 151 |
| abstract_inverted_index.imagery, | 110 |
| abstract_inverted_index.insights | 281 |
| abstract_inverted_index.isolated | 26 |
| abstract_inverted_index.learning | 55, 140, 177 |
| abstract_inverted_index.majority | 257 |
| abstract_inverted_index.methods. | 224 |
| abstract_inverted_index.multiple | 105 |
| abstract_inverted_index.planning | 118 |
| abstract_inverted_index.previous | 223 |
| abstract_inverted_index.reducing | 164 |
| abstract_inverted_index.research | 147 |
| abstract_inverted_index.resource | 117 |
| abstract_inverted_index.revealed | 232 |
| abstract_inverted_index.sources, | 107 |
| abstract_inverted_index.targeted | 283 |
| abstract_inverted_index.valuable | 280 |
| abstract_inverted_index.Recursive | 127 |
| abstract_inverted_index.accounted | 265 |
| abstract_inverted_index.alongside | 137 |
| abstract_inverted_index.approach, | 74 |
| abstract_inverted_index.comprised | 246 |
| abstract_inverted_index.considers | 60 |
| abstract_inverted_index.contrast, | 261 |
| abstract_inverted_index.datasets; | 192 |
| abstract_inverted_index.effective | 10, 159 |
| abstract_inverted_index.elevation | 112 |
| abstract_inverted_index.enhancing | 169 |
| abstract_inverted_index.evaluated | 82 |
| abstract_inverted_index.model’s | 171 |
| abstract_inverted_index.moderate, | 94 |
| abstract_inverted_index.precision | 221 |
| abstract_inverted_index.structure | 5, 77, 227 |
| abstract_inverted_index.Sentinel-2 | 109 |
| abstract_inverted_index.assessment | 1, 228 |
| abstract_inverted_index.classified | 242 |
| abstract_inverted_index.evaluation | 21, 46, 101 |
| abstract_inverted_index.forest’s | 4 |
| abstract_inverted_index.impressive | 199 |
| abstract_inverted_index.innovative | 45 |
| abstract_inverted_index.introduces | 41 |
| abstract_inverted_index.irrelevant | 162 |
| abstract_inverted_index.management | 285 |
| abstract_inverted_index.parameters | 28 |
| abstract_inverted_index.proportion | 270 |
| abstract_inverted_index.relatively | 268 |
| abstract_inverted_index.selection, | 136 |
| abstract_inverted_index.structure, | 67 |
| abstract_inverted_index.summarized | 149 |
| abstract_inverted_index.variations | 234 |
| abstract_inverted_index.“good” | 244 |
| abstract_inverted_index.“poor” | 262 |
| abstract_inverted_index.Elimination | 129 |
| abstract_inverted_index.acquisition | 33 |
| abstract_inverted_index.algorithms, | 178 |
| abstract_inverted_index.algorithms. | 56, 141 |
| abstract_inverted_index.application | 153 |
| abstract_inverted_index.categories: | 92 |
| abstract_inverted_index.categorized | 88 |
| abstract_inverted_index.coefficient | 206 |
| abstract_inverted_index.constituted | 255 |
| abstract_inverted_index.eliminating | 161 |
| abstract_inverted_index.management, | 12 |
| abstract_inverted_index.strategies. | 288 |
| abstract_inverted_index.substantial | 31 |
| abstract_inverted_index.sustainable | 17 |
| abstract_inverted_index.traditional | 20 |
| abstract_inverted_index.composition, | 63 |
| abstract_inverted_index.conservation | 13, 287 |
| abstract_inverted_index.construction | 98 |
| abstract_inverted_index.development. | 18 |
| abstract_inverted_index.distribution | 277 |
| abstract_inverted_index.holistically | 59 |
| abstract_inverted_index.incorporates | 49 |
| abstract_inverted_index.limitations, | 38 |
| abstract_inverted_index.“medium” | 252 |
| abstract_inverted_index.comprehensive | 73 |
| abstract_inverted_index.distribution. | 239 |
| abstract_inverted_index.significantly | 217 |
| abstract_inverted_index.specifically, | 193 |
| abstract_inverted_index.subsequently, | 168 |
| abstract_inverted_index.classification | 220 |
| abstract_inverted_index.configuration. | 70 |
| abstract_inverted_index.cost-effective | 43 |
| abstract_inverted_index.dimensionality | 166 |
| abstract_inverted_index.Cross-Validation | 131 |
| abstract_inverted_index.generalizability; | 172 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 94 |
| corresponding_author_ids | https://openalex.org/A5102743064 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I1284762954, https://openalex.org/I4210134523 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.7200000286102295 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.87638708 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |