RegionCLIP: Region-based Language-Image Pretraining Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2112.09106
Contrastive language-image pretraining (CLIP) using image-text pairs has achieved impressive results on image classification in both zero-shot and transfer learning settings. However, we show that directly applying such models to recognize image regions for object detection leads to poor performance due to a domain shift: CLIP was trained to match an image as a whole to a text description, without capturing the fine-grained alignment between image regions and text spans. To mitigate this issue, we propose a new method called RegionCLIP that significantly extends CLIP to learn region-level visual representations, thus enabling fine-grained alignment between image regions and textual concepts. Our method leverages a CLIP model to match image regions with template captions and then pretrains our model to align these region-text pairs in the feature space. When transferring our pretrained model to the open-vocabulary object detection tasks, our method significantly outperforms the state of the art by 3.8 AP50 and 2.2 AP for novel categories on COCO and LVIS datasets, respectively. Moreoever, the learned region representations support zero-shot inference for object detection, showing promising results on both COCO and LVIS datasets. Our code is available at https://github.com/microsoft/RegionCLIP.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2112.09106
- https://arxiv.org/pdf/2112.09106
- OA Status
- green
- Cited By
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226021361
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226021361Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2112.09106Digital Object Identifier
- Title
-
RegionCLIP: Region-based Language-Image PretrainingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-16Full publication date if available
- Authors
-
Yiwu Zhong, Jianwei Yang, Pengchuan Zhang, Chunyuan Li, Noel Codella, Liunian Harold Li, Luowei Zhou, Xiyang Dai, Lu Yuan, Yin Li, Jianfeng GaoList of authors in order
- Landing page
-
https://arxiv.org/abs/2112.09106Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2112.09106Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2112.09106Direct OA link when available
- Concepts
-
Computer science, Image (mathematics), Artificial intelligence, Vocabulary, Inference, Feature (linguistics), Object (grammar), Closed captioning, Image editing, Pattern recognition (psychology), Code (set theory), Natural language processing, Object detection, Computer vision, Linguistics, Programming language, Philosophy, Set (abstract data type)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
12Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 4, 2023: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226021361 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2112.09106 |
| ids.doi | https://doi.org/10.48550/arxiv.2112.09106 |
| ids.openalex | https://openalex.org/W4226021361 |
| fwci | |
| type | preprint |
| title | RegionCLIP: Region-based Language-Image Pretraining |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11714 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Multimodal Machine Learning Applications |
| topics[1].id | https://openalex.org/T11307 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.995199978351593 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Domain Adaptation and Few-Shot Learning |
| topics[2].id | https://openalex.org/T11775 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9621999859809875 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8162432312965393 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C115961682 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7046232223510742 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[1].display_name | Image (mathematics) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.7015968561172485 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C2777601683 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6044337749481201 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q6499736 |
| concepts[3].display_name | Vocabulary |
| concepts[4].id | https://openalex.org/C2776214188 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5926016569137573 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[4].display_name | Inference |
| concepts[5].id | https://openalex.org/C2776401178 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5818583965301514 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[5].display_name | Feature (linguistics) |
| concepts[6].id | https://openalex.org/C2781238097 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5814992189407349 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q175026 |
| concepts[6].display_name | Object (grammar) |
| concepts[7].id | https://openalex.org/C157657479 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5408874154090881 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2367247 |
| concepts[7].display_name | Closed captioning |
| concepts[8].id | https://openalex.org/C2776674983 |
| concepts[8].level | 3 |
| concepts[8].score | 0.5150746703147888 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q545981 |
| concepts[8].display_name | Image editing |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4657951593399048 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C2776760102 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4630221724510193 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5139990 |
| concepts[10].display_name | Code (set theory) |
| concepts[11].id | https://openalex.org/C204321447 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4609352648258209 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[11].display_name | Natural language processing |
| concepts[12].id | https://openalex.org/C2776151529 |
| concepts[12].level | 3 |
| concepts[12].score | 0.4296780228614807 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[12].display_name | Object detection |
| concepts[13].id | https://openalex.org/C31972630 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3987557590007782 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[13].display_name | Computer vision |
| concepts[14].id | https://openalex.org/C41895202 |
| concepts[14].level | 1 |
| concepts[14].score | 0.08861497044563293 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[14].display_name | Linguistics |
| concepts[15].id | https://openalex.org/C199360897 |
| concepts[15].level | 1 |
| concepts[15].score | 0.07428047060966492 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[15].display_name | Programming language |
| concepts[16].id | https://openalex.org/C138885662 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[16].display_name | Philosophy |
| concepts[17].id | https://openalex.org/C177264268 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[17].display_name | Set (abstract data type) |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8162432312965393 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/image |
| keywords[1].score | 0.7046232223510742 |
| keywords[1].display_name | Image (mathematics) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.7015968561172485 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/vocabulary |
| keywords[3].score | 0.6044337749481201 |
| keywords[3].display_name | Vocabulary |
| keywords[4].id | https://openalex.org/keywords/inference |
| keywords[4].score | 0.5926016569137573 |
| keywords[4].display_name | Inference |
| keywords[5].id | https://openalex.org/keywords/feature |
| keywords[5].score | 0.5818583965301514 |
| keywords[5].display_name | Feature (linguistics) |
| keywords[6].id | https://openalex.org/keywords/object |
| keywords[6].score | 0.5814992189407349 |
| keywords[6].display_name | Object (grammar) |
| keywords[7].id | https://openalex.org/keywords/closed-captioning |
| keywords[7].score | 0.5408874154090881 |
| keywords[7].display_name | Closed captioning |
| keywords[8].id | https://openalex.org/keywords/image-editing |
| keywords[8].score | 0.5150746703147888 |
| keywords[8].display_name | Image editing |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.4657951593399048 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/code |
| keywords[10].score | 0.4630221724510193 |
| keywords[10].display_name | Code (set theory) |
| keywords[11].id | https://openalex.org/keywords/natural-language-processing |
| keywords[11].score | 0.4609352648258209 |
| keywords[11].display_name | Natural language processing |
| keywords[12].id | https://openalex.org/keywords/object-detection |
| keywords[12].score | 0.4296780228614807 |
| keywords[12].display_name | Object detection |
| keywords[13].id | https://openalex.org/keywords/computer-vision |
| keywords[13].score | 0.3987557590007782 |
| keywords[13].display_name | Computer vision |
| keywords[14].id | https://openalex.org/keywords/linguistics |
| keywords[14].score | 0.08861497044563293 |
| keywords[14].display_name | Linguistics |
| keywords[15].id | https://openalex.org/keywords/programming-language |
| keywords[15].score | 0.07428047060966492 |
| keywords[15].display_name | Programming language |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2112.09106 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2112.09106 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2112.09106 |
| locations[1].id | doi:10.48550/arxiv.2112.09106 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2112.09106 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5040199499 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Yiwu Zhong |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhong, Yiwu |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100632859 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2022-6002 |
| authorships[1].author.display_name | Jianwei Yang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yang, Jianwei |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5059735251 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-1155-9507 |
| authorships[2].author.display_name | Pengchuan Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zhang, Pengchuan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5107893340 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Chunyuan Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Li, Chunyuan |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5073027533 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6735-9067 |
| authorships[4].author.display_name | Noel Codella |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Codella, Noel |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5004824034 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Liunian Harold Li |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Li, Liunian Harold |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5084879213 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-1197-0101 |
| authorships[6].author.display_name | Luowei Zhou |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Zhou, Luowei |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5057293861 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-1761-8715 |
| authorships[7].author.display_name | Xiyang Dai |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Dai, Xiyang |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5100390820 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-7879-0389 |
| authorships[8].author.display_name | Lu Yuan |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Yuan, Lu |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5100451141 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-4173-9453 |
| authorships[9].author.display_name | Yin Li |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Li, Yin |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5047233371 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-6371-505X |
| authorships[10].author.display_name | Jianfeng Gao |
| authorships[10].author_position | last |
| authorships[10].raw_author_name | Gao, Jianfeng |
| authorships[10].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2112.09106 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | RegionCLIP: Region-based Language-Image Pretraining |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11714 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Multimodal Machine Learning Applications |
| related_works | https://openalex.org/W4210416330, https://openalex.org/W2775506363, https://openalex.org/W3088136942, https://openalex.org/W4290852288, https://openalex.org/W2949362007, https://openalex.org/W4388893791, https://openalex.org/W4283207562, https://openalex.org/W2963177403, https://openalex.org/W2330246314, https://openalex.org/W2949522393 |
| cited_by_count | 12 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2112.09106 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2112.09106 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2112.09106 |
| primary_location.id | pmh:oai:arXiv.org:2112.09106 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2112.09106 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2112.09106 |
| publication_date | 2021-12-16 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 42, 53, 56, 76, 103 |
| abstract_inverted_index.AP | 152 |
| abstract_inverted_index.To | 70 |
| abstract_inverted_index.an | 50 |
| abstract_inverted_index.as | 52 |
| abstract_inverted_index.at | 186 |
| abstract_inverted_index.by | 147 |
| abstract_inverted_index.in | 14, 123 |
| abstract_inverted_index.is | 184 |
| abstract_inverted_index.of | 144 |
| abstract_inverted_index.on | 11, 156, 176 |
| abstract_inverted_index.to | 29, 37, 41, 48, 55, 85, 106, 118, 132 |
| abstract_inverted_index.we | 22, 74 |
| abstract_inverted_index.2.2 | 151 |
| abstract_inverted_index.3.8 | 148 |
| abstract_inverted_index.Our | 100, 182 |
| abstract_inverted_index.and | 17, 67, 97, 113, 150, 158, 179 |
| abstract_inverted_index.art | 146 |
| abstract_inverted_index.due | 40 |
| abstract_inverted_index.for | 33, 153, 170 |
| abstract_inverted_index.has | 7 |
| abstract_inverted_index.new | 77 |
| abstract_inverted_index.our | 116, 129, 138 |
| abstract_inverted_index.the | 61, 124, 133, 142, 145, 163 |
| abstract_inverted_index.was | 46 |
| abstract_inverted_index.AP50 | 149 |
| abstract_inverted_index.CLIP | 45, 84, 104 |
| abstract_inverted_index.COCO | 157, 178 |
| abstract_inverted_index.LVIS | 159, 180 |
| abstract_inverted_index.When | 127 |
| abstract_inverted_index.both | 15, 177 |
| abstract_inverted_index.code | 183 |
| abstract_inverted_index.poor | 38 |
| abstract_inverted_index.show | 23 |
| abstract_inverted_index.such | 27 |
| abstract_inverted_index.text | 57, 68 |
| abstract_inverted_index.that | 24, 81 |
| abstract_inverted_index.then | 114 |
| abstract_inverted_index.this | 72 |
| abstract_inverted_index.thus | 90 |
| abstract_inverted_index.with | 110 |
| abstract_inverted_index.align | 119 |
| abstract_inverted_index.image | 12, 31, 51, 65, 95, 108 |
| abstract_inverted_index.leads | 36 |
| abstract_inverted_index.learn | 86 |
| abstract_inverted_index.match | 49, 107 |
| abstract_inverted_index.model | 105, 117, 131 |
| abstract_inverted_index.novel | 154 |
| abstract_inverted_index.pairs | 6, 122 |
| abstract_inverted_index.state | 143 |
| abstract_inverted_index.these | 120 |
| abstract_inverted_index.using | 4 |
| abstract_inverted_index.whole | 54 |
| abstract_inverted_index.(CLIP) | 3 |
| abstract_inverted_index.called | 79 |
| abstract_inverted_index.domain | 43 |
| abstract_inverted_index.issue, | 73 |
| abstract_inverted_index.method | 78, 101, 139 |
| abstract_inverted_index.models | 28 |
| abstract_inverted_index.object | 34, 135, 171 |
| abstract_inverted_index.region | 165 |
| abstract_inverted_index.shift: | 44 |
| abstract_inverted_index.space. | 126 |
| abstract_inverted_index.spans. | 69 |
| abstract_inverted_index.tasks, | 137 |
| abstract_inverted_index.visual | 88 |
| abstract_inverted_index.between | 64, 94 |
| abstract_inverted_index.extends | 83 |
| abstract_inverted_index.feature | 125 |
| abstract_inverted_index.learned | 164 |
| abstract_inverted_index.propose | 75 |
| abstract_inverted_index.regions | 32, 66, 96, 109 |
| abstract_inverted_index.results | 10, 175 |
| abstract_inverted_index.showing | 173 |
| abstract_inverted_index.support | 167 |
| abstract_inverted_index.textual | 98 |
| abstract_inverted_index.trained | 47 |
| abstract_inverted_index.without | 59 |
| abstract_inverted_index.However, | 21 |
| abstract_inverted_index.achieved | 8 |
| abstract_inverted_index.applying | 26 |
| abstract_inverted_index.captions | 112 |
| abstract_inverted_index.directly | 25 |
| abstract_inverted_index.enabling | 91 |
| abstract_inverted_index.learning | 19 |
| abstract_inverted_index.mitigate | 71 |
| abstract_inverted_index.template | 111 |
| abstract_inverted_index.transfer | 18 |
| abstract_inverted_index.alignment | 63, 93 |
| abstract_inverted_index.available | 185 |
| abstract_inverted_index.capturing | 60 |
| abstract_inverted_index.concepts. | 99 |
| abstract_inverted_index.datasets, | 160 |
| abstract_inverted_index.datasets. | 181 |
| abstract_inverted_index.detection | 35, 136 |
| abstract_inverted_index.inference | 169 |
| abstract_inverted_index.leverages | 102 |
| abstract_inverted_index.pretrains | 115 |
| abstract_inverted_index.promising | 174 |
| abstract_inverted_index.recognize | 30 |
| abstract_inverted_index.settings. | 20 |
| abstract_inverted_index.zero-shot | 16, 168 |
| abstract_inverted_index.Moreoever, | 162 |
| abstract_inverted_index.RegionCLIP | 80 |
| abstract_inverted_index.categories | 155 |
| abstract_inverted_index.detection, | 172 |
| abstract_inverted_index.image-text | 5 |
| abstract_inverted_index.impressive | 9 |
| abstract_inverted_index.pretrained | 130 |
| abstract_inverted_index.Contrastive | 0 |
| abstract_inverted_index.outperforms | 141 |
| abstract_inverted_index.performance | 39 |
| abstract_inverted_index.pretraining | 2 |
| abstract_inverted_index.region-text | 121 |
| abstract_inverted_index.description, | 58 |
| abstract_inverted_index.fine-grained | 62, 92 |
| abstract_inverted_index.region-level | 87 |
| abstract_inverted_index.transferring | 128 |
| abstract_inverted_index.respectively. | 161 |
| abstract_inverted_index.significantly | 82, 140 |
| abstract_inverted_index.classification | 13 |
| abstract_inverted_index.language-image | 1 |
| abstract_inverted_index.open-vocabulary | 134 |
| abstract_inverted_index.representations | 166 |
| abstract_inverted_index.representations, | 89 |
| abstract_inverted_index.https://github.com/microsoft/RegionCLIP. | 187 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 11 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/4 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Quality Education |
| citation_normalized_percentile |