Regression-Based Machine Learning for Predicting Lifting Movement Pattern Change in People with Low Back Pain Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/s24041337
Machine learning (ML) algorithms are crucial within the realm of healthcare applications. However, a comprehensive assessment of the effectiveness of regression algorithms in predicting alterations in lifting movement patterns has not been conducted. This research represents a pilot investigation using regression-based machine learning techniques to forecast alterations in trunk, hip, and knee movements subsequent to a 12-week strength training for people who have low back pain (LBP). The system uses a feature extraction algorithm to calculate the range of motion in the sagittal plane for the knee, trunk, and hip and 12 different regression machine learning algorithms. The results show that Ensemble Tree with LSBoost demonstrated the utmost accuracy in prognosticating trunk movement. Meanwhile, the Ensemble Tree approach, specifically LSBoost, exhibited the highest predictive precision for hip movement. The Gaussian regression with the kernel chosen as exponential returned the highest prediction accuracy for knee movement. These regression models hold the potential to significantly enhance the precision of visualisation of the treatment output for individuals afflicted with LBP.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s24041337
- https://www.mdpi.com/1424-8220/24/4/1337/pdf?version=1708338590
- OA Status
- gold
- Cited By
- 9
- References
- 43
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391944120
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391944120Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s24041337Digital Object Identifier
- Title
-
Regression-Based Machine Learning for Predicting Lifting Movement Pattern Change in People with Low Back PainWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-19Full publication date if available
- Authors
-
Trung C. Phan, Adrian Pranata, Joshua Farragher, Adam L. Bryant, Hung T. Nguyen, Rifai ChaiList of authors in order
- Landing page
-
https://doi.org/10.3390/s24041337Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/24/4/1337/pdf?version=1708338590Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/24/4/1337/pdf?version=1708338590Direct OA link when available
- Concepts
-
Artificial intelligence, Machine learning, Random forest, Regression, Computer science, Sagittal plane, Trunk, Regression analysis, Support vector machine, Mathematics, Statistics, Medicine, Radiology, Ecology, BiologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
9Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 5Per-year citation counts (last 5 years)
- References (count)
-
43Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391944120 |
|---|---|
| doi | https://doi.org/10.3390/s24041337 |
| ids.doi | https://doi.org/10.3390/s24041337 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38400495 |
| ids.openalex | https://openalex.org/W4391944120 |
| fwci | 7.57720375 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | Q000628 |
| mesh[1].descriptor_ui | D017116 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | therapy |
| mesh[1].descriptor_name | Low Back Pain |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D017770 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Lifting |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D007717 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Knee |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D009068 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Movement |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D000069550 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Machine Learning |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D001696 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Biomechanical Phenomena |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D006801 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Humans |
| mesh[8].qualifier_ui | Q000628 |
| mesh[8].descriptor_ui | D017116 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | therapy |
| mesh[8].descriptor_name | Low Back Pain |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D017770 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Lifting |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D007717 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Knee |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D009068 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Movement |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D000069550 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Machine Learning |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D001696 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Biomechanical Phenomena |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D006801 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Humans |
| mesh[15].qualifier_ui | Q000628 |
| mesh[15].descriptor_ui | D017116 |
| mesh[15].is_major_topic | True |
| mesh[15].qualifier_name | therapy |
| mesh[15].descriptor_name | Low Back Pain |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D017770 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Lifting |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D007717 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Knee |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D009068 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Movement |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D000069550 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Machine Learning |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D001696 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Biomechanical Phenomena |
| type | article |
| title | Regression-Based Machine Learning for Predicting Lifting Movement Pattern Change in People with Low Back Pain |
| biblio.issue | 4 |
| biblio.volume | 24 |
| biblio.last_page | 1337 |
| biblio.first_page | 1337 |
| topics[0].id | https://openalex.org/T10084 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2736 |
| topics[0].subfield.display_name | Pharmacology |
| topics[0].display_name | Musculoskeletal pain and rehabilitation |
| topics[1].id | https://openalex.org/T14510 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9557999968528748 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Medical Imaging and Analysis |
| topics[2].id | https://openalex.org/T10784 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9228000044822693 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Muscle activation and electromyography studies |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.6944583058357239 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C119857082 |
| concepts[1].level | 1 |
| concepts[1].score | 0.691213071346283 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[1].display_name | Machine learning |
| concepts[2].id | https://openalex.org/C169258074 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6225628852844238 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q245748 |
| concepts[2].display_name | Random forest |
| concepts[3].id | https://openalex.org/C83546350 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6161388158798218 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[3].display_name | Regression |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.6065762639045715 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C178910020 |
| concepts[5].level | 2 |
| concepts[5].score | 0.570671796798706 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2211994 |
| concepts[5].display_name | Sagittal plane |
| concepts[6].id | https://openalex.org/C2781197403 |
| concepts[6].level | 2 |
| concepts[6].score | 0.49467846751213074 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q193472 |
| concepts[6].display_name | Trunk |
| concepts[7].id | https://openalex.org/C152877465 |
| concepts[7].level | 2 |
| concepts[7].score | 0.48181262612342834 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[7].display_name | Regression analysis |
| concepts[8].id | https://openalex.org/C12267149 |
| concepts[8].level | 2 |
| concepts[8].score | 0.47270581126213074 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[8].display_name | Support vector machine |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.16762512922286987 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.16305607557296753 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C71924100 |
| concepts[11].level | 0 |
| concepts[11].score | 0.12365108728408813 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[11].display_name | Medicine |
| concepts[12].id | https://openalex.org/C126838900 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[12].display_name | Radiology |
| concepts[13].id | https://openalex.org/C18903297 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[13].display_name | Ecology |
| concepts[14].id | https://openalex.org/C86803240 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[14].display_name | Biology |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.6944583058357239 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/machine-learning |
| keywords[1].score | 0.691213071346283 |
| keywords[1].display_name | Machine learning |
| keywords[2].id | https://openalex.org/keywords/random-forest |
| keywords[2].score | 0.6225628852844238 |
| keywords[2].display_name | Random forest |
| keywords[3].id | https://openalex.org/keywords/regression |
| keywords[3].score | 0.6161388158798218 |
| keywords[3].display_name | Regression |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.6065762639045715 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/sagittal-plane |
| keywords[5].score | 0.570671796798706 |
| keywords[5].display_name | Sagittal plane |
| keywords[6].id | https://openalex.org/keywords/trunk |
| keywords[6].score | 0.49467846751213074 |
| keywords[6].display_name | Trunk |
| keywords[7].id | https://openalex.org/keywords/regression-analysis |
| keywords[7].score | 0.48181262612342834 |
| keywords[7].display_name | Regression analysis |
| keywords[8].id | https://openalex.org/keywords/support-vector-machine |
| keywords[8].score | 0.47270581126213074 |
| keywords[8].display_name | Support vector machine |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.16762512922286987 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.16305607557296753 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/medicine |
| keywords[11].score | 0.12365108728408813 |
| keywords[11].display_name | Medicine |
| language | en |
| locations[0].id | doi:10.3390/s24041337 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/24/4/1337/pdf?version=1708338590 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s24041337 |
| locations[1].id | pmid:38400495 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38400495 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10891548 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10891548/pdf/sensors-24-01337.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors (Basel) |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10891548 |
| locations[3].id | pmh:oai:doaj.org/article:ebb3baa5c0dc406d9ca7fec910fd22e1 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors, Vol 24, Iss 4, p 1337 (2024) |
| locations[3].landing_page_url | https://doaj.org/article/ebb3baa5c0dc406d9ca7fec910fd22e1 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5023732820 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4226-0743 |
| authorships[0].author.display_name | Trung C. Phan |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I57093077 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I57093077 |
| authorships[0].institutions[0].ror | https://ror.org/031rekg67 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I57093077 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | Swinburne University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Trung C. Phan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia |
| authorships[1].author.id | https://openalex.org/A5044264719 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7877-1679 |
| authorships[1].author.display_name | Adrian Pranata |
| authorships[1].countries | AU, CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I57093077 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I57093077 |
| authorships[1].affiliations[1].raw_affiliation_string | School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I4210135985 |
| authorships[1].affiliations[2].raw_affiliation_string | College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China |
| authorships[1].affiliations[3].institution_ids | https://openalex.org/I82951845 |
| authorships[1].affiliations[3].raw_affiliation_string | School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3000, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I82951845 |
| authorships[1].institutions[0].ror | https://ror.org/04ttjf776 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I82951845 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | RMIT University |
| authorships[1].institutions[1].id | https://openalex.org/I57093077 |
| authorships[1].institutions[1].ror | https://ror.org/031rekg67 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I57093077 |
| authorships[1].institutions[1].country_code | AU |
| authorships[1].institutions[1].display_name | Swinburne University of Technology |
| authorships[1].institutions[2].id | https://openalex.org/I4210135985 |
| authorships[1].institutions[2].ror | https://ror.org/03ns6aq57 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I4210135985 |
| authorships[1].institutions[2].country_code | CN |
| authorships[1].institutions[2].display_name | Shanghai University of Medicine and Health Sciences |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Adrian Pranata |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China, School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC 3122, Australia, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3000, Australia, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia |
| authorships[2].author.id | https://openalex.org/A5007011179 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3282-1834 |
| authorships[2].author.display_name | Joshua Farragher |
| authorships[2].countries | AU, CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I82951845 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3000, Australia |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I4210135985 |
| authorships[2].affiliations[1].raw_affiliation_string | College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China |
| authorships[2].institutions[0].id | https://openalex.org/I82951845 |
| authorships[2].institutions[0].ror | https://ror.org/04ttjf776 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I82951845 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | RMIT University |
| authorships[2].institutions[1].id | https://openalex.org/I4210135985 |
| authorships[2].institutions[1].ror | https://ror.org/03ns6aq57 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I4210135985 |
| authorships[2].institutions[1].country_code | CN |
| authorships[2].institutions[1].display_name | Shanghai University of Medicine and Health Sciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Joshua Farragher |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3000, Australia |
| authorships[3].author.id | https://openalex.org/A5007752151 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6778-5274 |
| authorships[3].author.display_name | Adam L. Bryant |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I165779595 |
| authorships[3].affiliations[0].raw_affiliation_string | Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, The University of Melbourne, Melbourne, VIC 3010, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I165779595 |
| authorships[3].institutions[0].ror | https://ror.org/01ej9dk98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I165779595 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | The University of Melbourne |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Adam Bryant |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Centre for Health, Exercise and Sports Medicine, Department of Physiotherapy, The University of Melbourne, Melbourne, VIC 3010, Australia |
| authorships[4].author.id | https://openalex.org/A5100716476 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3373-8178 |
| authorships[4].author.display_name | Hung T. Nguyen |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I57093077 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia |
| authorships[4].institutions[0].id | https://openalex.org/I57093077 |
| authorships[4].institutions[0].ror | https://ror.org/031rekg67 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I57093077 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | Swinburne University of Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hung T. Nguyen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia |
| authorships[5].author.id | https://openalex.org/A5018877662 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1922-7024 |
| authorships[5].author.display_name | Rifai Chai |
| authorships[5].countries | AU |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I57093077 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia |
| authorships[5].institutions[0].id | https://openalex.org/I57093077 |
| authorships[5].institutions[0].ror | https://ror.org/031rekg67 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I57093077 |
| authorships[5].institutions[0].country_code | AU |
| authorships[5].institutions[0].display_name | Swinburne University of Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Rifai Chai |
| authorships[5].is_corresponding | True |
| authorships[5].raw_affiliation_strings | School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/24/4/1337/pdf?version=1708338590 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Regression-Based Machine Learning for Predicting Lifting Movement Pattern Change in People with Low Back Pain |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10084 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2736 |
| primary_topic.subfield.display_name | Pharmacology |
| primary_topic.display_name | Musculoskeletal pain and rehabilitation |
| related_works | https://openalex.org/W4200112873, https://openalex.org/W2955796858, https://openalex.org/W4224941037, https://openalex.org/W2004826645, https://openalex.org/W2949150093, https://openalex.org/W1981179827, https://openalex.org/W2048488252, https://openalex.org/W4289884158, https://openalex.org/W2940614149, https://openalex.org/W4288365262 |
| cited_by_count | 9 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/s24041337 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/24/4/1337/pdf?version=1708338590 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s24041337 |
| primary_location.id | doi:10.3390/s24041337 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/24/4/1337/pdf?version=1708338590 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s24041337 |
| publication_date | 2024-02-19 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4240410738, https://openalex.org/W4289860747, https://openalex.org/W2145651029, https://openalex.org/W2118778027, https://openalex.org/W6804167914, https://openalex.org/W1984460973, https://openalex.org/W4295080240, https://openalex.org/W3125045698, https://openalex.org/W3184308629, https://openalex.org/W4387705862, https://openalex.org/W4380083166, https://openalex.org/W3018758730, https://openalex.org/W2084358449, https://openalex.org/W2900303043, https://openalex.org/W4322622206, https://openalex.org/W4296907771, https://openalex.org/W3152804902, https://openalex.org/W3016080921, https://openalex.org/W3090556953, https://openalex.org/W4324329654, https://openalex.org/W3214400552, https://openalex.org/W3164178104, https://openalex.org/W2206259485, https://openalex.org/W2096218277, https://openalex.org/W2789103564, https://openalex.org/W2969334670, https://openalex.org/W2212808702, https://openalex.org/W2165768812, https://openalex.org/W6680532697, https://openalex.org/W4239510810, https://openalex.org/W4297957988, https://openalex.org/W2244486986, https://openalex.org/W3149839747, https://openalex.org/W4212883601, https://openalex.org/W4211049957, https://openalex.org/W3118299338, https://openalex.org/W3091227556, https://openalex.org/W4319656431, https://openalex.org/W1804382742, https://openalex.org/W2137226992, https://openalex.org/W4225658221, https://openalex.org/W2127153992, https://openalex.org/W4214676028 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 13, 36, 55, 70 |
| abstract_inverted_index.12 | 91 |
| abstract_inverted_index.as | 135 |
| abstract_inverted_index.in | 22, 25, 47, 80, 109 |
| abstract_inverted_index.of | 9, 16, 19, 78, 156, 158 |
| abstract_inverted_index.to | 44, 54, 74, 151 |
| abstract_inverted_index.The | 67, 97, 128 |
| abstract_inverted_index.and | 50, 88, 90 |
| abstract_inverted_index.are | 4 |
| abstract_inverted_index.for | 59, 84, 125, 142, 162 |
| abstract_inverted_index.has | 29 |
| abstract_inverted_index.hip | 89, 126 |
| abstract_inverted_index.low | 63 |
| abstract_inverted_index.not | 30 |
| abstract_inverted_index.the | 7, 17, 76, 81, 85, 106, 114, 121, 132, 138, 149, 154, 159 |
| abstract_inverted_index.who | 61 |
| abstract_inverted_index.(ML) | 2 |
| abstract_inverted_index.LBP. | 166 |
| abstract_inverted_index.This | 33 |
| abstract_inverted_index.Tree | 102, 116 |
| abstract_inverted_index.back | 64 |
| abstract_inverted_index.been | 31 |
| abstract_inverted_index.have | 62 |
| abstract_inverted_index.hip, | 49 |
| abstract_inverted_index.hold | 148 |
| abstract_inverted_index.knee | 51, 143 |
| abstract_inverted_index.pain | 65 |
| abstract_inverted_index.show | 99 |
| abstract_inverted_index.that | 100 |
| abstract_inverted_index.uses | 69 |
| abstract_inverted_index.with | 103, 131, 165 |
| abstract_inverted_index.These | 145 |
| abstract_inverted_index.knee, | 86 |
| abstract_inverted_index.pilot | 37 |
| abstract_inverted_index.plane | 83 |
| abstract_inverted_index.range | 77 |
| abstract_inverted_index.realm | 8 |
| abstract_inverted_index.trunk | 111 |
| abstract_inverted_index.using | 39 |
| abstract_inverted_index.(LBP). | 66 |
| abstract_inverted_index.chosen | 134 |
| abstract_inverted_index.kernel | 133 |
| abstract_inverted_index.models | 147 |
| abstract_inverted_index.motion | 79 |
| abstract_inverted_index.output | 161 |
| abstract_inverted_index.people | 60 |
| abstract_inverted_index.system | 68 |
| abstract_inverted_index.trunk, | 48, 87 |
| abstract_inverted_index.utmost | 107 |
| abstract_inverted_index.within | 6 |
| abstract_inverted_index.12-week | 56 |
| abstract_inverted_index.LSBoost | 104 |
| abstract_inverted_index.Machine | 0 |
| abstract_inverted_index.crucial | 5 |
| abstract_inverted_index.enhance | 153 |
| abstract_inverted_index.feature | 71 |
| abstract_inverted_index.highest | 122, 139 |
| abstract_inverted_index.lifting | 26 |
| abstract_inverted_index.machine | 41, 94 |
| abstract_inverted_index.results | 98 |
| abstract_inverted_index.Ensemble | 101, 115 |
| abstract_inverted_index.Gaussian | 129 |
| abstract_inverted_index.However, | 12 |
| abstract_inverted_index.LSBoost, | 119 |
| abstract_inverted_index.accuracy | 108, 141 |
| abstract_inverted_index.forecast | 45 |
| abstract_inverted_index.learning | 1, 42, 95 |
| abstract_inverted_index.movement | 27 |
| abstract_inverted_index.patterns | 28 |
| abstract_inverted_index.research | 34 |
| abstract_inverted_index.returned | 137 |
| abstract_inverted_index.sagittal | 82 |
| abstract_inverted_index.strength | 57 |
| abstract_inverted_index.training | 58 |
| abstract_inverted_index.afflicted | 164 |
| abstract_inverted_index.algorithm | 73 |
| abstract_inverted_index.approach, | 117 |
| abstract_inverted_index.calculate | 75 |
| abstract_inverted_index.different | 92 |
| abstract_inverted_index.exhibited | 120 |
| abstract_inverted_index.movement. | 112, 127, 144 |
| abstract_inverted_index.movements | 52 |
| abstract_inverted_index.potential | 150 |
| abstract_inverted_index.precision | 124, 155 |
| abstract_inverted_index.treatment | 160 |
| abstract_inverted_index.Meanwhile, | 113 |
| abstract_inverted_index.algorithms | 3, 21 |
| abstract_inverted_index.assessment | 15 |
| abstract_inverted_index.conducted. | 32 |
| abstract_inverted_index.extraction | 72 |
| abstract_inverted_index.healthcare | 10 |
| abstract_inverted_index.predicting | 23 |
| abstract_inverted_index.prediction | 140 |
| abstract_inverted_index.predictive | 123 |
| abstract_inverted_index.regression | 20, 93, 130, 146 |
| abstract_inverted_index.represents | 35 |
| abstract_inverted_index.subsequent | 53 |
| abstract_inverted_index.techniques | 43 |
| abstract_inverted_index.algorithms. | 96 |
| abstract_inverted_index.alterations | 24, 46 |
| abstract_inverted_index.exponential | 136 |
| abstract_inverted_index.individuals | 163 |
| abstract_inverted_index.demonstrated | 105 |
| abstract_inverted_index.specifically | 118 |
| abstract_inverted_index.applications. | 11 |
| abstract_inverted_index.comprehensive | 14 |
| abstract_inverted_index.effectiveness | 18 |
| abstract_inverted_index.investigation | 38 |
| abstract_inverted_index.significantly | 152 |
| abstract_inverted_index.visualisation | 157 |
| abstract_inverted_index.prognosticating | 110 |
| abstract_inverted_index.regression-based | 40 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5018877662 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I57093077 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.4300000071525574 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.95459183 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |