Regression via Implicit Models and Optimal Transport Cost Minimization Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2003.01296
This paper addresses the classic problem of regression, which involves the inductive learning of a map, $y=f(x,z)$, $z$ denoting noise, $f:\mathbb{R}^n\times \mathbb{R}^k \rightarrow \mathbb{R}^m$. Recently, Conditional GAN (CGAN) has been applied for regression and has shown to be advantageous over the other standard approaches like Gaussian Process Regression, given its ability to implicitly model complex noise forms. However, the current CGAN implementation for regression uses the classical generator-discriminator architecture with the minimax optimization approach, which is notorious for being difficult to train due to issues like training instability or failure to converge. In this paper, we take another step towards regression models that implicitly model the noise, and propose a solution which directly optimizes the optimal transport cost between the true probability distribution $p(y|x)$ and the estimated distribution $\hat{p}(y|x)$ and does not suffer from the issues associated with the minimax approach. On a variety of synthetic and real-world datasets, our proposed solution achieves state-of-the-art results. The code accompanying this paper is available at "https://github.com/gurdaspuriya/ot_regression".
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2003.01296
- https://arxiv.org/pdf/2003.01296
- OA Status
- green
- Cited By
- 2
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3010516204
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3010516204Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2003.01296Digital Object Identifier
- Title
-
Regression via Implicit Models and Optimal Transport Cost MinimizationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-03-03Full publication date if available
- Authors
-
Saurav Manchanda, Khoa D. Doan, Pranjul Yadav, S. Sathiya KeerthiList of authors in order
- Landing page
-
https://arxiv.org/abs/2003.01296Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2003.01296Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2003.01296Direct OA link when available
- Concepts
-
Minification, Regression, Regression analysis, Computer science, Econometrics, Mathematical optimization, Mathematics, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2020: 2Per-year citation counts (last 5 years)
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3010516204 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2003.01296 |
| ids.doi | https://doi.org/10.48550/arxiv.2003.01296 |
| ids.mag | 3010516204 |
| ids.openalex | https://openalex.org/W3010516204 |
| fwci | |
| type | preprint |
| title | Regression via Implicit Models and Optimal Transport Cost Minimization |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12814 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9987000226974487 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Gaussian Processes and Bayesian Inference |
| topics[1].id | https://openalex.org/T12072 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9933000206947327 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and Algorithms |
| topics[2].id | https://openalex.org/T12056 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9803000092506409 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Markov Chains and Monte Carlo Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C147764199 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6481168866157532 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q6865248 |
| concepts[0].display_name | Minification |
| concepts[1].id | https://openalex.org/C83546350 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5836993455886841 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[1].display_name | Regression |
| concepts[2].id | https://openalex.org/C152877465 |
| concepts[2].level | 2 |
| concepts[2].score | 0.4843229353427887 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[2].display_name | Regression analysis |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4699295461177826 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C149782125 |
| concepts[4].level | 1 |
| concepts[4].score | 0.46158841252326965 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[4].display_name | Econometrics |
| concepts[5].id | https://openalex.org/C126255220 |
| concepts[5].level | 1 |
| concepts[5].score | 0.356572687625885 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[5].display_name | Mathematical optimization |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3269507884979248 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.25662797689437866 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/minification |
| keywords[0].score | 0.6481168866157532 |
| keywords[0].display_name | Minification |
| keywords[1].id | https://openalex.org/keywords/regression |
| keywords[1].score | 0.5836993455886841 |
| keywords[1].display_name | Regression |
| keywords[2].id | https://openalex.org/keywords/regression-analysis |
| keywords[2].score | 0.4843229353427887 |
| keywords[2].display_name | Regression analysis |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4699295461177826 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/econometrics |
| keywords[4].score | 0.46158841252326965 |
| keywords[4].display_name | Econometrics |
| keywords[5].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[5].score | 0.356572687625885 |
| keywords[5].display_name | Mathematical optimization |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.3269507884979248 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.25662797689437866 |
| keywords[7].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2003.01296 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2003.01296 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2003.01296 |
| locations[1].id | doi:10.48550/arxiv.2003.01296 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2003.01296 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5071643834 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6481-7755 |
| authorships[0].author.display_name | Saurav Manchanda |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2800403580 |
| authorships[0].affiliations[0].raw_affiliation_string | university of minnesota; |
| authorships[0].institutions[0].id | https://openalex.org/I2800403580 |
| authorships[0].institutions[0].ror | https://ror.org/03grvy078 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2800403580 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of Minnesota System |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Saurav Manchanda |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | university of minnesota; |
| authorships[1].author.id | https://openalex.org/A5080642445 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1610-8206 |
| authorships[1].author.display_name | Khoa D. Doan |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Khoa Doan |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5003976436 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7860-5830 |
| authorships[2].author.display_name | Pranjul Yadav |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Pranjul Yadav |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5106708987 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | S. Sathiya Keerthi |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | S. Sathiya Keerthi |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2003.01296 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Regression via Implicit Models and Optimal Transport Cost Minimization |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12814 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9987000226974487 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Gaussian Processes and Bayesian Inference |
| related_works | https://openalex.org/W31220157, https://openalex.org/W2312753042, https://openalex.org/W4289356671, https://openalex.org/W2389155397, https://openalex.org/W2165884543, https://openalex.org/W3186837933, https://openalex.org/W2368989808, https://openalex.org/W2034959125, https://openalex.org/W2355687852, https://openalex.org/W2621086889 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2020 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2003.01296 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2003.01296 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2003.01296 |
| primary_location.id | pmh:oai:arXiv.org:2003.01296 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2003.01296 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2003.01296 |
| publication_date | 2020-03-03 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2066674838, https://openalex.org/W2009435671, https://openalex.org/W1663973292, https://openalex.org/W1565746575, https://openalex.org/W1496559305, https://openalex.org/W2055825262, https://openalex.org/W2998663318, https://openalex.org/W1522301498, https://openalex.org/W2139688603, https://openalex.org/W2912742167, https://openalex.org/W2099471712, https://openalex.org/W2949117887, https://openalex.org/W2161767008, https://openalex.org/W2946953917 |
| referenced_works_count | 14 |
| abstract_inverted_index.a | 14, 109, 142 |
| abstract_inverted_index.In | 92 |
| abstract_inverted_index.On | 141 |
| abstract_inverted_index.at | 162 |
| abstract_inverted_index.be | 37 |
| abstract_inverted_index.is | 75, 160 |
| abstract_inverted_index.of | 6, 13, 144 |
| abstract_inverted_index.or | 88 |
| abstract_inverted_index.to | 36, 51, 80, 83, 90 |
| abstract_inverted_index.we | 95 |
| abstract_inverted_index.$z$ | 17 |
| abstract_inverted_index.GAN | 26 |
| abstract_inverted_index.The | 155 |
| abstract_inverted_index.and | 33, 107, 124, 129, 146 |
| abstract_inverted_index.due | 82 |
| abstract_inverted_index.for | 31, 62, 77 |
| abstract_inverted_index.has | 28, 34 |
| abstract_inverted_index.its | 49 |
| abstract_inverted_index.not | 131 |
| abstract_inverted_index.our | 149 |
| abstract_inverted_index.the | 3, 10, 40, 58, 65, 70, 105, 114, 119, 125, 134, 138 |
| abstract_inverted_index.CGAN | 60 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.been | 29 |
| abstract_inverted_index.code | 156 |
| abstract_inverted_index.cost | 117 |
| abstract_inverted_index.does | 130 |
| abstract_inverted_index.from | 133 |
| abstract_inverted_index.like | 44, 85 |
| abstract_inverted_index.map, | 15 |
| abstract_inverted_index.over | 39 |
| abstract_inverted_index.step | 98 |
| abstract_inverted_index.take | 96 |
| abstract_inverted_index.that | 102 |
| abstract_inverted_index.this | 93, 158 |
| abstract_inverted_index.true | 120 |
| abstract_inverted_index.uses | 64 |
| abstract_inverted_index.with | 69, 137 |
| abstract_inverted_index.being | 78 |
| abstract_inverted_index.given | 48 |
| abstract_inverted_index.model | 53, 104 |
| abstract_inverted_index.noise | 55 |
| abstract_inverted_index.other | 41 |
| abstract_inverted_index.paper | 1, 159 |
| abstract_inverted_index.shown | 35 |
| abstract_inverted_index.train | 81 |
| abstract_inverted_index.which | 8, 74, 111 |
| abstract_inverted_index.(CGAN) | 27 |
| abstract_inverted_index.forms. | 56 |
| abstract_inverted_index.issues | 84, 135 |
| abstract_inverted_index.models | 101 |
| abstract_inverted_index.noise, | 19, 106 |
| abstract_inverted_index.paper, | 94 |
| abstract_inverted_index.suffer | 132 |
| abstract_inverted_index.Process | 46 |
| abstract_inverted_index.ability | 50 |
| abstract_inverted_index.another | 97 |
| abstract_inverted_index.applied | 30 |
| abstract_inverted_index.between | 118 |
| abstract_inverted_index.classic | 4 |
| abstract_inverted_index.complex | 54 |
| abstract_inverted_index.current | 59 |
| abstract_inverted_index.failure | 89 |
| abstract_inverted_index.minimax | 71, 139 |
| abstract_inverted_index.optimal | 115 |
| abstract_inverted_index.problem | 5 |
| abstract_inverted_index.propose | 108 |
| abstract_inverted_index.towards | 99 |
| abstract_inverted_index.variety | 143 |
| abstract_inverted_index.$p(y|x)$ | 123 |
| abstract_inverted_index.Gaussian | 45 |
| abstract_inverted_index.However, | 57 |
| abstract_inverted_index.achieves | 152 |
| abstract_inverted_index.denoting | 18 |
| abstract_inverted_index.directly | 112 |
| abstract_inverted_index.involves | 9 |
| abstract_inverted_index.learning | 12 |
| abstract_inverted_index.proposed | 150 |
| abstract_inverted_index.results. | 154 |
| abstract_inverted_index.solution | 110, 151 |
| abstract_inverted_index.standard | 42 |
| abstract_inverted_index.training | 86 |
| abstract_inverted_index.Recently, | 24 |
| abstract_inverted_index.addresses | 2 |
| abstract_inverted_index.approach, | 73 |
| abstract_inverted_index.approach. | 140 |
| abstract_inverted_index.available | 161 |
| abstract_inverted_index.classical | 66 |
| abstract_inverted_index.converge. | 91 |
| abstract_inverted_index.datasets, | 148 |
| abstract_inverted_index.difficult | 79 |
| abstract_inverted_index.estimated | 126 |
| abstract_inverted_index.inductive | 11 |
| abstract_inverted_index.notorious | 76 |
| abstract_inverted_index.optimizes | 113 |
| abstract_inverted_index.synthetic | 145 |
| abstract_inverted_index.transport | 116 |
| abstract_inverted_index.approaches | 43 |
| abstract_inverted_index.associated | 136 |
| abstract_inverted_index.implicitly | 52, 103 |
| abstract_inverted_index.real-world | 147 |
| abstract_inverted_index.regression | 32, 63, 100 |
| abstract_inverted_index.$y=f(x,z)$, | 16 |
| abstract_inverted_index.Conditional | 25 |
| abstract_inverted_index.Regression, | 47 |
| abstract_inverted_index.\rightarrow | 22 |
| abstract_inverted_index.instability | 87 |
| abstract_inverted_index.probability | 121 |
| abstract_inverted_index.regression, | 7 |
| abstract_inverted_index.\mathbb{R}^k | 21 |
| abstract_inverted_index.accompanying | 157 |
| abstract_inverted_index.advantageous | 38 |
| abstract_inverted_index.architecture | 68 |
| abstract_inverted_index.distribution | 122, 127 |
| abstract_inverted_index.optimization | 72 |
| abstract_inverted_index.$\hat{p}(y|x)$ | 128 |
| abstract_inverted_index.\mathbb{R}^m$. | 23 |
| abstract_inverted_index.implementation | 61 |
| abstract_inverted_index.state-of-the-art | 153 |
| abstract_inverted_index.$f:\mathbb{R}^n\times | 20 |
| abstract_inverted_index.generator-discriminator | 67 |
| abstract_inverted_index."https://github.com/gurdaspuriya/ot_regression". | 163 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Reduced inequalities |
| citation_normalized_percentile |