Reinforced Risk Prediction With Budget Constraint Using Irregularly Measured Data From Electronic Health Records Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1080/01621459.2021.1978467
Uncontrolled glycated hemoglobin (HbA1c) levels are associated with adverse events among complex diabetic patients. These adverse events present serious health risks to affected patients and are associated with significant financial costs. Thus, a high-quality predictive model that could identify high-risk patients so as to inform preventative treatment has the potential to improve patient outcomes while reducing healthcare costs. Because the biomarker information needed to predict risk is costly and burdensome, it is desirable that such a model collect only as much information as is needed on each patient so as to render an accurate prediction. We propose a sequential predictive model that uses accumulating patient longitudinal data to classify patients as: high-risk, low-risk, or uncertain. Patients classified as high-risk are then recommended to receive preventative treatment and those classified as low-risk are recommended to standard care. Patients classified as uncertain are monitored until a high-risk or low-risk determination is made. We construct the model using claims and enrollment files from Medicare, linked with patient Electronic Health Records (EHR) data. The proposed model uses functional principal components to accommodate noisy longitudinal data and weighting to deal with missingness and sampling bias. The proposed method demonstrates higher predictive accuracy and lower cost than competing methods in a series of simulation experiments and application to data on complex patients with diabetes.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/01621459.2021.1978467
- OA Status
- green
- Cited By
- 2
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3201599698
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3201599698Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/01621459.2021.1978467Digital Object Identifier
- Title
-
Reinforced Risk Prediction With Budget Constraint Using Irregularly Measured Data From Electronic Health RecordsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-09Full publication date if available
- Authors
-
Yinghao Pan, Eric B. Laber, Maureen A. Smith, Ying‐Qi ZhaoList of authors in order
- Landing page
-
https://doi.org/10.1080/01621459.2021.1978467Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://pmc.ncbi.nlm.nih.gov/articles/PMC10274334/pdf/nihms-1761157.pdfDirect OA link when available
- Concepts
-
Weighting, Missing data, Medicine, Computer science, Data mining, Health care, Emergency medicine, Machine learning, Radiology, Economics, Economic growthTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3201599698 |
|---|---|
| doi | https://doi.org/10.1080/01621459.2021.1978467 |
| ids.doi | https://doi.org/10.1080/01621459.2021.1978467 |
| ids.mag | 3201599698 |
| ids.openalex | https://openalex.org/W3201599698 |
| fwci | 0.28220715 |
| type | article |
| title | Reinforced Risk Prediction With Budget Constraint Using Irregularly Measured Data From Electronic Health Records |
| biblio.issue | 542 |
| biblio.volume | 118 |
| biblio.last_page | 1101 |
| biblio.first_page | 1090 |
| grants[0].funder | https://openalex.org/F4320332161 |
| grants[0].award_id | |
| grants[0].funder_display_name | National Institutes of Health |
| grants[1].funder | https://openalex.org/F4320337351 |
| grants[1].award_id | |
| grants[1].funder_display_name | National Cancer Institute |
| grants[2].funder | https://openalex.org/F4320337357 |
| grants[2].award_id | |
| grants[2].funder_display_name | National Institute of Diabetes and Digestive and Kidney Diseases |
| topics[0].id | https://openalex.org/T13702 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Machine Learning in Healthcare |
| topics[1].id | https://openalex.org/T10027 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.987500011920929 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2712 |
| topics[1].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[1].display_name | Diabetes, Cardiovascular Risks, and Lipoproteins |
| topics[2].id | https://openalex.org/T10560 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.98580002784729 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2712 |
| topics[2].subfield.display_name | Endocrinology, Diabetes and Metabolism |
| topics[2].display_name | Diabetes Management and Research |
| funders[0].id | https://openalex.org/F4320332161 |
| funders[0].ror | https://ror.org/01cwqze88 |
| funders[0].display_name | National Institutes of Health |
| funders[1].id | https://openalex.org/F4320337351 |
| funders[1].ror | https://ror.org/040gcmg81 |
| funders[1].display_name | National Cancer Institute |
| funders[2].id | https://openalex.org/F4320337357 |
| funders[2].ror | https://ror.org/00adh9b73 |
| funders[2].display_name | National Institute of Diabetes and Digestive and Kidney Diseases |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C183115368 |
| concepts[0].level | 2 |
| concepts[0].score | 0.671811044216156 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q856577 |
| concepts[0].display_name | Weighting |
| concepts[1].id | https://openalex.org/C9357733 |
| concepts[1].level | 2 |
| concepts[1].score | 0.48627007007598877 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6878417 |
| concepts[1].display_name | Missing data |
| concepts[2].id | https://openalex.org/C71924100 |
| concepts[2].level | 0 |
| concepts[2].score | 0.47715872526168823 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[2].display_name | Medicine |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.4525224566459656 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4190866947174072 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C160735492 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4102102518081665 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q31207 |
| concepts[5].display_name | Health care |
| concepts[6].id | https://openalex.org/C194828623 |
| concepts[6].level | 1 |
| concepts[6].score | 0.35544753074645996 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2861470 |
| concepts[6].display_name | Emergency medicine |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.21605435013771057 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C126838900 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[8].display_name | Radiology |
| concepts[9].id | https://openalex.org/C162324750 |
| concepts[9].level | 0 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[9].display_name | Economics |
| concepts[10].id | https://openalex.org/C50522688 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q189833 |
| concepts[10].display_name | Economic growth |
| keywords[0].id | https://openalex.org/keywords/weighting |
| keywords[0].score | 0.671811044216156 |
| keywords[0].display_name | Weighting |
| keywords[1].id | https://openalex.org/keywords/missing-data |
| keywords[1].score | 0.48627007007598877 |
| keywords[1].display_name | Missing data |
| keywords[2].id | https://openalex.org/keywords/medicine |
| keywords[2].score | 0.47715872526168823 |
| keywords[2].display_name | Medicine |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.4525224566459656 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.4190866947174072 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/health-care |
| keywords[5].score | 0.4102102518081665 |
| keywords[5].display_name | Health care |
| keywords[6].id | https://openalex.org/keywords/emergency-medicine |
| keywords[6].score | 0.35544753074645996 |
| keywords[6].display_name | Emergency medicine |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.21605435013771057 |
| keywords[7].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1080/01621459.2021.1978467 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4394736638 |
| locations[0].source.issn | 0162-1459, 1537-274X |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0162-1459 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of the American Statistical Association |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of the American Statistical Association |
| locations[0].landing_page_url | https://doi.org/10.1080/01621459.2021.1978467 |
| locations[1].id | pmh:oai:pubmedcentral.nih.gov:10274334 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S2764455111 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed Central |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10274334/pdf/nihms-1761157.pdf |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | J Am Stat Assoc |
| locations[1].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10274334 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5102996158 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-4022-1815 |
| authorships[0].author.display_name | Yinghao Pan |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I102149020 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC |
| authorships[0].institutions[0].id | https://openalex.org/I102149020 |
| authorships[0].institutions[0].ror | https://ror.org/04dawnj30 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I102149020 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of North Carolina at Charlotte |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yinghao Pan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, NC |
| authorships[1].author.id | https://openalex.org/A5022846477 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2640-7696 |
| authorships[1].author.display_name | Eric B. Laber |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I137902535 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Statistics, North Carolina State University, Raleigh, NC |
| authorships[1].institutions[0].id | https://openalex.org/I137902535 |
| authorships[1].institutions[0].ror | https://ror.org/04tj63d06 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I137902535 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | North Carolina State University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Eric B. Laber |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Statistics, North Carolina State University, Raleigh, NC |
| authorships[2].author.id | https://openalex.org/A5041375538 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-4370-000X |
| authorships[2].author.display_name | Maureen A. Smith |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I135310074 |
| authorships[2].affiliations[0].raw_affiliation_string | Departments of Population Health Sciences and Family Medicine, University of Wisconsin-Madison, Madison, WI |
| authorships[2].institutions[0].id | https://openalex.org/I135310074 |
| authorships[2].institutions[0].ror | https://ror.org/01y2jtd41 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I135310074 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of Wisconsin–Madison |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Maureen A. Smith |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Departments of Population Health Sciences and Family Medicine, University of Wisconsin-Madison, Madison, WI |
| authorships[3].author.id | https://openalex.org/A5050444279 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2851-2257 |
| authorships[3].author.display_name | Ying‐Qi Zhao |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210089486 |
| authorships[3].affiliations[0].raw_affiliation_string | Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA |
| authorships[3].institutions[0].id | https://openalex.org/I4210089486 |
| authorships[3].institutions[0].ror | https://ror.org/007ps6h72 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210089486 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Fred Hutch Cancer Center |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ying-Qi Zhao |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10274334/pdf/nihms-1761157.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Reinforced Risk Prediction With Budget Constraint Using Irregularly Measured Data From Electronic Health Records |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13702 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Machine Learning in Healthcare |
| related_works | https://openalex.org/W2180954594, https://openalex.org/W2052835778, https://openalex.org/W2049003611, https://openalex.org/W2127804977, https://openalex.org/W2108418243, https://openalex.org/W164103134, https://openalex.org/W2787352659, https://openalex.org/W4380150146, https://openalex.org/W3024870410, https://openalex.org/W2410652950 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2021 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:10274334 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10274334/pdf/nihms-1761157.pdf |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | J Am Stat Assoc |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10274334 |
| primary_location.id | doi:10.1080/01621459.2021.1978467 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4394736638 |
| primary_location.source.issn | 0162-1459, 1537-274X |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0162-1459 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of the American Statistical Association |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of the American Statistical Association |
| primary_location.landing_page_url | https://doi.org/10.1080/01621459.2021.1978467 |
| publication_date | 2021-09-09 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W1526927233, https://openalex.org/W4251240079, https://openalex.org/W2161813894, https://openalex.org/W2736708073, https://openalex.org/W2171367373, https://openalex.org/W2118377301, https://openalex.org/W2134387316, https://openalex.org/W2595480812, https://openalex.org/W2090094313, https://openalex.org/W2122095984, https://openalex.org/W2126022166, https://openalex.org/W2137767404, https://openalex.org/W2171285465, https://openalex.org/W2311276019, https://openalex.org/W1968772389, https://openalex.org/W2636189206, https://openalex.org/W2136669587, https://openalex.org/W2064801606, https://openalex.org/W2565959004, https://openalex.org/W2014158063, https://openalex.org/W2033779771, https://openalex.org/W1993231088, https://openalex.org/W2064325470, https://openalex.org/W4292156489, https://openalex.org/W2114200978, https://openalex.org/W2025139691, https://openalex.org/W195866714, https://openalex.org/W2015314547, https://openalex.org/W2165884492, https://openalex.org/W2144148350, https://openalex.org/W2158707174, https://openalex.org/W2519384156, https://openalex.org/W1535491338, https://openalex.org/W3101275405, https://openalex.org/W1726806267 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 32, 75, 97, 143, 204 |
| abstract_inverted_index.We | 95, 150 |
| abstract_inverted_index.an | 92 |
| abstract_inverted_index.as | 42, 79, 82, 89, 117, 129, 138 |
| abstract_inverted_index.in | 203 |
| abstract_inverted_index.is | 66, 71, 83, 148 |
| abstract_inverted_index.it | 70 |
| abstract_inverted_index.of | 206 |
| abstract_inverted_index.on | 85, 213 |
| abstract_inverted_index.or | 113, 145 |
| abstract_inverted_index.so | 41, 88 |
| abstract_inverted_index.to | 21, 43, 50, 63, 90, 107, 122, 133, 176, 183, 211 |
| abstract_inverted_index.The | 169, 190 |
| abstract_inverted_index.and | 24, 68, 126, 156, 181, 187, 197, 209 |
| abstract_inverted_index.are | 5, 25, 119, 131, 140 |
| abstract_inverted_index.as: | 110 |
| abstract_inverted_index.has | 47 |
| abstract_inverted_index.the | 48, 59, 152 |
| abstract_inverted_index.cost | 199 |
| abstract_inverted_index.data | 106, 180, 212 |
| abstract_inverted_index.deal | 184 |
| abstract_inverted_index.each | 86 |
| abstract_inverted_index.from | 159 |
| abstract_inverted_index.much | 80 |
| abstract_inverted_index.only | 78 |
| abstract_inverted_index.risk | 65 |
| abstract_inverted_index.such | 74 |
| abstract_inverted_index.than | 200 |
| abstract_inverted_index.that | 36, 73, 101 |
| abstract_inverted_index.then | 120 |
| abstract_inverted_index.uses | 102, 172 |
| abstract_inverted_index.with | 7, 27, 162, 185, 216 |
| abstract_inverted_index.(EHR) | 167 |
| abstract_inverted_index.These | 14 |
| abstract_inverted_index.Thus, | 31 |
| abstract_inverted_index.among | 10 |
| abstract_inverted_index.bias. | 189 |
| abstract_inverted_index.care. | 135 |
| abstract_inverted_index.could | 37 |
| abstract_inverted_index.data. | 168 |
| abstract_inverted_index.files | 158 |
| abstract_inverted_index.lower | 198 |
| abstract_inverted_index.made. | 149 |
| abstract_inverted_index.model | 35, 76, 100, 153, 171 |
| abstract_inverted_index.noisy | 178 |
| abstract_inverted_index.risks | 20 |
| abstract_inverted_index.those | 127 |
| abstract_inverted_index.until | 142 |
| abstract_inverted_index.using | 154 |
| abstract_inverted_index.while | 54 |
| abstract_inverted_index.Health | 165 |
| abstract_inverted_index.claims | 155 |
| abstract_inverted_index.costly | 67 |
| abstract_inverted_index.costs. | 30, 57 |
| abstract_inverted_index.events | 9, 16 |
| abstract_inverted_index.health | 19 |
| abstract_inverted_index.higher | 194 |
| abstract_inverted_index.inform | 44 |
| abstract_inverted_index.levels | 4 |
| abstract_inverted_index.linked | 161 |
| abstract_inverted_index.method | 192 |
| abstract_inverted_index.needed | 62, 84 |
| abstract_inverted_index.render | 91 |
| abstract_inverted_index.series | 205 |
| abstract_inverted_index.(HbA1c) | 3 |
| abstract_inverted_index.Because | 58 |
| abstract_inverted_index.Records | 166 |
| abstract_inverted_index.adverse | 8, 15 |
| abstract_inverted_index.collect | 77 |
| abstract_inverted_index.complex | 11, 214 |
| abstract_inverted_index.improve | 51 |
| abstract_inverted_index.methods | 202 |
| abstract_inverted_index.patient | 52, 87, 104, 163 |
| abstract_inverted_index.predict | 64 |
| abstract_inverted_index.present | 17 |
| abstract_inverted_index.propose | 96 |
| abstract_inverted_index.receive | 123 |
| abstract_inverted_index.serious | 18 |
| abstract_inverted_index.Patients | 115, 136 |
| abstract_inverted_index.accuracy | 196 |
| abstract_inverted_index.accurate | 93 |
| abstract_inverted_index.affected | 22 |
| abstract_inverted_index.classify | 108 |
| abstract_inverted_index.diabetic | 12 |
| abstract_inverted_index.glycated | 1 |
| abstract_inverted_index.identify | 38 |
| abstract_inverted_index.low-risk | 130, 146 |
| abstract_inverted_index.outcomes | 53 |
| abstract_inverted_index.patients | 23, 40, 109, 215 |
| abstract_inverted_index.proposed | 170, 191 |
| abstract_inverted_index.reducing | 55 |
| abstract_inverted_index.sampling | 188 |
| abstract_inverted_index.standard | 134 |
| abstract_inverted_index.Medicare, | 160 |
| abstract_inverted_index.biomarker | 60 |
| abstract_inverted_index.competing | 201 |
| abstract_inverted_index.construct | 151 |
| abstract_inverted_index.desirable | 72 |
| abstract_inverted_index.diabetes. | 217 |
| abstract_inverted_index.financial | 29 |
| abstract_inverted_index.high-risk | 39, 118, 144 |
| abstract_inverted_index.low-risk, | 112 |
| abstract_inverted_index.monitored | 141 |
| abstract_inverted_index.patients. | 13 |
| abstract_inverted_index.potential | 49 |
| abstract_inverted_index.principal | 174 |
| abstract_inverted_index.treatment | 46, 125 |
| abstract_inverted_index.uncertain | 139 |
| abstract_inverted_index.weighting | 182 |
| abstract_inverted_index.Electronic | 164 |
| abstract_inverted_index.associated | 6, 26 |
| abstract_inverted_index.classified | 116, 128, 137 |
| abstract_inverted_index.components | 175 |
| abstract_inverted_index.enrollment | 157 |
| abstract_inverted_index.functional | 173 |
| abstract_inverted_index.healthcare | 56 |
| abstract_inverted_index.hemoglobin | 2 |
| abstract_inverted_index.high-risk, | 111 |
| abstract_inverted_index.predictive | 34, 99, 195 |
| abstract_inverted_index.sequential | 98 |
| abstract_inverted_index.simulation | 207 |
| abstract_inverted_index.uncertain. | 114 |
| abstract_inverted_index.accommodate | 177 |
| abstract_inverted_index.application | 210 |
| abstract_inverted_index.burdensome, | 69 |
| abstract_inverted_index.experiments | 208 |
| abstract_inverted_index.information | 61, 81 |
| abstract_inverted_index.missingness | 186 |
| abstract_inverted_index.prediction. | 94 |
| abstract_inverted_index.recommended | 121, 132 |
| abstract_inverted_index.significant | 28 |
| abstract_inverted_index.Uncontrolled | 0 |
| abstract_inverted_index.accumulating | 103 |
| abstract_inverted_index.demonstrates | 193 |
| abstract_inverted_index.high-quality | 33 |
| abstract_inverted_index.longitudinal | 105, 179 |
| abstract_inverted_index.preventative | 45, 124 |
| abstract_inverted_index.determination | 147 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.64223458 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |