Reinforcement Learning Based Optimal Adversarial Pathway Estimation Using Remotely Sensed Spectral-Terrain Data and Human Value Assessment Article Swipe
Josef Affourtit
,
Nicholas Scott
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.11159/icsta22.112
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.11159/icsta22.112
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.11159/icsta22.112
- https://doi.org/10.11159/icsta22.112
- OA Status
- bronze
- References
- 7
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4293010394
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4293010394Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.11159/icsta22.112Digital Object Identifier
- Title
-
Reinforcement Learning Based Optimal Adversarial Pathway Estimation Using Remotely Sensed Spectral-Terrain Data and Human Value AssessmentWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-01Full publication date if available
- Authors
-
Josef Affourtit, Nicholas ScottList of authors in order
- Landing page
-
https://doi.org/10.11159/icsta22.112Publisher landing page
- PDF URL
-
https://doi.org/10.11159/icsta22.112Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.11159/icsta22.112Direct OA link when available
- Concepts
-
Terrain, Reinforcement learning, Adversarial system, Computer science, Artificial intelligence, Value (mathematics), Estimation, Machine learning, Engineering, Geography, Cartography, Systems engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
7Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4293010394 |
|---|---|
| doi | https://doi.org/10.11159/icsta22.112 |
| ids.doi | https://doi.org/10.11159/icsta22.112 |
| ids.openalex | https://openalex.org/W4293010394 |
| fwci | 0.0 |
| type | article |
| title | Reinforcement Learning Based Optimal Adversarial Pathway Estimation Using Remotely Sensed Spectral-Terrain Data and Human Value Assessment |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9613999724388123 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T12597 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9480999708175659 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2213 |
| topics[1].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[1].display_name | Fire Detection and Safety Systems |
| topics[2].id | https://openalex.org/T11689 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9182000160217285 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Adversarial Robustness in Machine Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C161840515 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7941721081733704 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q186131 |
| concepts[0].display_name | Terrain |
| concepts[1].id | https://openalex.org/C97541855 |
| concepts[1].level | 2 |
| concepts[1].score | 0.773418664932251 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q830687 |
| concepts[1].display_name | Reinforcement learning |
| concepts[2].id | https://openalex.org/C37736160 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7082066535949707 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[2].display_name | Adversarial system |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6598573923110962 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5720234513282776 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C2776291640 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5039975047111511 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2912517 |
| concepts[5].display_name | Value (mathematics) |
| concepts[6].id | https://openalex.org/C96250715 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4654313921928406 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[6].display_name | Estimation |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.41054049134254456 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.16705548763275146 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.11594831943511963 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C58640448 |
| concepts[10].level | 1 |
| concepts[10].score | 0.10271495580673218 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[10].display_name | Cartography |
| concepts[11].id | https://openalex.org/C201995342 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[11].display_name | Systems engineering |
| keywords[0].id | https://openalex.org/keywords/terrain |
| keywords[0].score | 0.7941721081733704 |
| keywords[0].display_name | Terrain |
| keywords[1].id | https://openalex.org/keywords/reinforcement-learning |
| keywords[1].score | 0.773418664932251 |
| keywords[1].display_name | Reinforcement learning |
| keywords[2].id | https://openalex.org/keywords/adversarial-system |
| keywords[2].score | 0.7082066535949707 |
| keywords[2].display_name | Adversarial system |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6598573923110962 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5720234513282776 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/value |
| keywords[5].score | 0.5039975047111511 |
| keywords[5].display_name | Value (mathematics) |
| keywords[6].id | https://openalex.org/keywords/estimation |
| keywords[6].score | 0.4654313921928406 |
| keywords[6].display_name | Estimation |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.41054049134254456 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.16705548763275146 |
| keywords[8].display_name | Engineering |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.11594831943511963 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/cartography |
| keywords[10].score | 0.10271495580673218 |
| keywords[10].display_name | Cartography |
| language | en |
| locations[0].id | doi:10.11159/icsta22.112 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4386872458 |
| locations[0].source.issn | 2562-7767 |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2562-7767 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Proceedings of the International Conference on Statistics, Theory and Applications (ICSTA ...) |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.11159/icsta22.112 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Conference on Statistics: Theory and Applications |
| locations[0].landing_page_url | http://doi.org/10.11159/icsta22.112 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5053532812 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1101-1384 |
| authorships[0].author.display_name | Josef Affourtit |
| authorships[0].affiliations[0].raw_affiliation_string | Improbable LLC 4100 N. Fairfax Dr., Suite 500, Arlington, VA, 22203, USA |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Josef Affourtit |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Improbable LLC 4100 N. Fairfax Dr., Suite 500, Arlington, VA, 22203, USA |
| authorships[1].author.id | https://openalex.org/A5105876872 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8495-8547 |
| authorships[1].author.display_name | Nicholas Scott |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210132419 |
| authorships[1].affiliations[0].raw_affiliation_string | Riverside Research Institute 2640 Hibiscus Way, Beavercreek, OH, 45431, USA |
| authorships[1].institutions[0].id | https://openalex.org/I4210132419 |
| authorships[1].institutions[0].ror | https://ror.org/02tvg0w73 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210132419 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Riverside Research Institute |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Nicholas Scott |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Riverside Research Institute 2640 Hibiscus Way, Beavercreek, OH, 45431, USA |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.11159/icsta22.112 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Reinforcement Learning Based Optimal Adversarial Pathway Estimation Using Remotely Sensed Spectral-Terrain Data and Human Value Assessment |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9613999724388123 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W3013360982, https://openalex.org/W4287598984, https://openalex.org/W3145910327, https://openalex.org/W3101326751, https://openalex.org/W2964108292, https://openalex.org/W4281255644, https://openalex.org/W1562959674, https://openalex.org/W4319083788, https://openalex.org/W3022038857, https://openalex.org/W2990162188 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.11159/icsta22.112 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4386872458 |
| best_oa_location.source.issn | 2562-7767 |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 2562-7767 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Proceedings of the International Conference on Statistics, Theory and Applications (ICSTA ...) |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.11159/icsta22.112 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Conference on Statistics: Theory and Applications |
| best_oa_location.landing_page_url | http://doi.org/10.11159/icsta22.112 |
| primary_location.id | doi:10.11159/icsta22.112 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4386872458 |
| primary_location.source.issn | 2562-7767 |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2562-7767 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Proceedings of the International Conference on Statistics, Theory and Applications (ICSTA ...) |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.11159/icsta22.112 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Conference on Statistics: Theory and Applications |
| primary_location.landing_page_url | http://doi.org/10.11159/icsta22.112 |
| publication_date | 2022-08-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2105234315, https://openalex.org/W2164399552, https://openalex.org/W1914674302, https://openalex.org/W2018790085, https://openalex.org/W1586030997, https://openalex.org/W600319679, https://openalex.org/W4211221179 |
| referenced_works_count | 7 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.08224642 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |