Relation based Measuring of Semantic Similarity for Web Documents Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.5120/21081-3762
The World Wide Web (WWW) is the information resource centre in which information exists in the structure of web pages which are interlinked with each other.From the huge amount of information present on WWW it has been found difficult to extract the relevant information for the query given by the user.The reason for this is that the information exists on web is in natural language.The layered architecture semantic web is given by Tim Berner Lee to overcome the issues of information retrieval.In recent times, numerous semantic web search engines have been developed like Ontolook, Swoogle, etc which assist in searching significant documents presented on semantic web.Several attempts have been made in ruling out the similarity of semantic web pages but then also the results of these semantic similarity techniques between web documents is neither appropriate nor upto the user's prospects.This paper proposes an approach for finding the semantic similarity between the web documents along with the consideration of the concepts as well as the relationships that will exists between the concepts also.In our approach the documents are being processed by extracting concepts and relationships between the existing concepts from the documents using the base ontology and the dictionary having the words along with the synonyms.Finally, the set of any two documents are compared to find their semantic similarity by taking the relationships that exists in the documents.We discover all relevant relationships between the words which provide the core information of the document and then the similarity of these relationships is computed on each web page to find out their significance.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.5120/21081-3762
- https://doi.org/10.5120/21081-3762
- OA Status
- bronze
- Cited By
- 1
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W1130464080
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W1130464080Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5120/21081-3762Digital Object Identifier
- Title
-
Relation based Measuring of Semantic Similarity for Web DocumentsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-06-18Full publication date if available
- Authors
-
Poonam Chahal, Manjeet Singh, Suresh KumarList of authors in order
- Landing page
-
https://doi.org/10.5120/21081-3762Publisher landing page
- PDF URL
-
https://doi.org/10.5120/21081-3762Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5120/21081-3762Direct OA link when available
- Concepts
-
Computer science, Information retrieval, Relation (database), Semantic similarity, Similarity (geometry), Semantic Web, World Wide Web, Natural language processing, Artificial intelligence, Data mining, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2019: 1Per-year citation counts (last 5 years)
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W1130464080 |
|---|---|
| doi | https://doi.org/10.5120/21081-3762 |
| ids.doi | https://doi.org/10.5120/21081-3762 |
| ids.mag | 1130464080 |
| ids.openalex | https://openalex.org/W1130464080 |
| fwci | 0.0 |
| type | article |
| title | Relation based Measuring of Semantic Similarity for Web Documents |
| biblio.issue | 7 |
| biblio.volume | 119 |
| biblio.last_page | 29 |
| biblio.first_page | 26 |
| topics[0].id | https://openalex.org/T10215 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Semantic Web and Ontologies |
| topics[1].id | https://openalex.org/T12016 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9988999962806702 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Web Data Mining and Analysis |
| topics[2].id | https://openalex.org/T10679 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9966999888420105 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Service-Oriented Architecture and Web Services |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.9016672372817993 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C23123220 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6749389171600342 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[1].display_name | Information retrieval |
| concepts[2].id | https://openalex.org/C25343380 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6724936366081238 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q277521 |
| concepts[2].display_name | Relation (database) |
| concepts[3].id | https://openalex.org/C130318100 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6021047830581665 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2268914 |
| concepts[3].display_name | Semantic similarity |
| concepts[4].id | https://openalex.org/C103278499 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5847244262695312 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[4].display_name | Similarity (geometry) |
| concepts[5].id | https://openalex.org/C2129575 |
| concepts[5].level | 2 |
| concepts[5].score | 0.49324244260787964 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q54837 |
| concepts[5].display_name | Semantic Web |
| concepts[6].id | https://openalex.org/C136764020 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4638386368751526 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[6].display_name | World Wide Web |
| concepts[7].id | https://openalex.org/C204321447 |
| concepts[7].level | 1 |
| concepts[7].score | 0.33207517862319946 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[7].display_name | Natural language processing |
| concepts[8].id | https://openalex.org/C154945302 |
| concepts[8].level | 1 |
| concepts[8].score | 0.20678812265396118 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[8].display_name | Artificial intelligence |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.16634902358055115 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.9016672372817993 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/information-retrieval |
| keywords[1].score | 0.6749389171600342 |
| keywords[1].display_name | Information retrieval |
| keywords[2].id | https://openalex.org/keywords/relation |
| keywords[2].score | 0.6724936366081238 |
| keywords[2].display_name | Relation (database) |
| keywords[3].id | https://openalex.org/keywords/semantic-similarity |
| keywords[3].score | 0.6021047830581665 |
| keywords[3].display_name | Semantic similarity |
| keywords[4].id | https://openalex.org/keywords/similarity |
| keywords[4].score | 0.5847244262695312 |
| keywords[4].display_name | Similarity (geometry) |
| keywords[5].id | https://openalex.org/keywords/semantic-web |
| keywords[5].score | 0.49324244260787964 |
| keywords[5].display_name | Semantic Web |
| keywords[6].id | https://openalex.org/keywords/world-wide-web |
| keywords[6].score | 0.4638386368751526 |
| keywords[6].display_name | World Wide Web |
| keywords[7].id | https://openalex.org/keywords/natural-language-processing |
| keywords[7].score | 0.33207517862319946 |
| keywords[7].display_name | Natural language processing |
| keywords[8].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[8].score | 0.20678812265396118 |
| keywords[8].display_name | Artificial intelligence |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.16634902358055115 |
| keywords[9].display_name | Data mining |
| language | en |
| locations[0].id | doi:10.5120/21081-3762 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210206007 |
| locations[0].source.issn | 0975-8887 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0975-8887 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | International Journal of Computer Applications |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.5120/21081-3762 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | International Journal of Computer Applications |
| locations[0].landing_page_url | http://doi.org/10.5120/21081-3762 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5020752264 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2684-4354 |
| authorships[0].author.display_name | Poonam Chahal |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Poonam Chahal |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5101816461 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5117-0830 |
| authorships[1].author.display_name | Manjeet Singh |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Manjeet Singh |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5084921480 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7774-7052 |
| authorships[2].author.display_name | Suresh Kumar |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Suresh Kumar |
| authorships[2].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5120/21081-3762 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Relation based Measuring of Semantic Similarity for Web Documents |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10215 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Semantic Web and Ontologies |
| related_works | https://openalex.org/W2226024386, https://openalex.org/W4376653378, https://openalex.org/W2380654781, https://openalex.org/W2114797768, https://openalex.org/W2176214140, https://openalex.org/W2516873349, https://openalex.org/W2898077673, https://openalex.org/W4385239468, https://openalex.org/W1990601549, https://openalex.org/W2022470916 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2019 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5120/21081-3762 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210206007 |
| best_oa_location.source.issn | 0975-8887 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0975-8887 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | International Journal of Computer Applications |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.5120/21081-3762 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | International Journal of Computer Applications |
| best_oa_location.landing_page_url | http://doi.org/10.5120/21081-3762 |
| primary_location.id | doi:10.5120/21081-3762 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210206007 |
| primary_location.source.issn | 0975-8887 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0975-8887 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | International Journal of Computer Applications |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.5120/21081-3762 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | International Journal of Computer Applications |
| primary_location.landing_page_url | http://doi.org/10.5120/21081-3762 |
| publication_date | 2015-06-18 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W6821143472, https://openalex.org/W2066636486, https://openalex.org/W2164037733, https://openalex.org/W6681475906, https://openalex.org/W2006993047, https://openalex.org/W1907013787, https://openalex.org/W2082815071, https://openalex.org/W2052477699, https://openalex.org/W2126895787, https://openalex.org/W2104566221, https://openalex.org/W6639055396, https://openalex.org/W1854214752, https://openalex.org/W2146588030, https://openalex.org/W1511517794 |
| referenced_works_count | 14 |
| abstract_inverted_index.an | 142 |
| abstract_inverted_index.as | 160, 162 |
| abstract_inverted_index.by | 48, 71, 179, 218 |
| abstract_inverted_index.in | 10, 14, 62, 98, 110, 224 |
| abstract_inverted_index.is | 5, 54, 61, 69, 132, 249 |
| abstract_inverted_index.it | 34 |
| abstract_inverted_index.of | 17, 29, 79, 115, 124, 157, 207, 239, 246 |
| abstract_inverted_index.on | 32, 59, 103, 251 |
| abstract_inverted_index.to | 39, 75, 213, 255 |
| abstract_inverted_index.Lee | 74 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.Tim | 72 |
| abstract_inverted_index.WWW | 33 |
| abstract_inverted_index.Web | 3 |
| abstract_inverted_index.all | 228 |
| abstract_inverted_index.and | 182, 195, 242 |
| abstract_inverted_index.any | 208 |
| abstract_inverted_index.are | 21, 176, 211 |
| abstract_inverted_index.but | 119 |
| abstract_inverted_index.etc | 95 |
| abstract_inverted_index.for | 44, 52, 144 |
| abstract_inverted_index.has | 35 |
| abstract_inverted_index.nor | 135 |
| abstract_inverted_index.our | 172 |
| abstract_inverted_index.out | 112, 257 |
| abstract_inverted_index.set | 206 |
| abstract_inverted_index.the | 6, 15, 26, 41, 45, 49, 56, 77, 113, 122, 137, 146, 150, 155, 158, 163, 169, 174, 185, 189, 192, 196, 199, 203, 205, 220, 225, 232, 236, 240, 244 |
| abstract_inverted_index.two | 209 |
| abstract_inverted_index.web | 18, 60, 68, 86, 117, 130, 151, 253 |
| abstract_inverted_index.Wide | 2 |
| abstract_inverted_index.also | 121 |
| abstract_inverted_index.base | 193 |
| abstract_inverted_index.been | 36, 90, 108 |
| abstract_inverted_index.core | 237 |
| abstract_inverted_index.each | 24, 252 |
| abstract_inverted_index.find | 214, 256 |
| abstract_inverted_index.from | 188 |
| abstract_inverted_index.have | 89, 107 |
| abstract_inverted_index.huge | 27 |
| abstract_inverted_index.like | 92 |
| abstract_inverted_index.made | 109 |
| abstract_inverted_index.page | 254 |
| abstract_inverted_index.that | 55, 165, 222 |
| abstract_inverted_index.then | 120, 243 |
| abstract_inverted_index.this | 53 |
| abstract_inverted_index.upto | 136 |
| abstract_inverted_index.well | 161 |
| abstract_inverted_index.will | 166 |
| abstract_inverted_index.with | 23, 154, 202 |
| abstract_inverted_index.(WWW) | 4 |
| abstract_inverted_index.World | 1 |
| abstract_inverted_index.along | 153, 201 |
| abstract_inverted_index.being | 177 |
| abstract_inverted_index.found | 37 |
| abstract_inverted_index.given | 47, 70 |
| abstract_inverted_index.pages | 19, 118 |
| abstract_inverted_index.paper | 140 |
| abstract_inverted_index.query | 46 |
| abstract_inverted_index.their | 215, 258 |
| abstract_inverted_index.these | 125, 247 |
| abstract_inverted_index.using | 191 |
| abstract_inverted_index.which | 11, 20, 96, 234 |
| abstract_inverted_index.words | 200, 233 |
| abstract_inverted_index.Berner | 73 |
| abstract_inverted_index.amount | 28 |
| abstract_inverted_index.assist | 97 |
| abstract_inverted_index.centre | 9 |
| abstract_inverted_index.exists | 13, 58, 167, 223 |
| abstract_inverted_index.having | 198 |
| abstract_inverted_index.issues | 78 |
| abstract_inverted_index.reason | 51 |
| abstract_inverted_index.recent | 82 |
| abstract_inverted_index.ruling | 111 |
| abstract_inverted_index.search | 87 |
| abstract_inverted_index.taking | 219 |
| abstract_inverted_index.times, | 83 |
| abstract_inverted_index.user's | 138 |
| abstract_inverted_index.also.In | 171 |
| abstract_inverted_index.between | 129, 149, 168, 184, 231 |
| abstract_inverted_index.engines | 88 |
| abstract_inverted_index.extract | 40 |
| abstract_inverted_index.finding | 145 |
| abstract_inverted_index.layered | 65 |
| abstract_inverted_index.natural | 63 |
| abstract_inverted_index.neither | 133 |
| abstract_inverted_index.present | 31 |
| abstract_inverted_index.provide | 235 |
| abstract_inverted_index.results | 123 |
| abstract_inverted_index.Swoogle, | 94 |
| abstract_inverted_index.approach | 143, 173 |
| abstract_inverted_index.attempts | 106 |
| abstract_inverted_index.compared | 212 |
| abstract_inverted_index.computed | 250 |
| abstract_inverted_index.concepts | 159, 170, 181, 187 |
| abstract_inverted_index.discover | 227 |
| abstract_inverted_index.document | 241 |
| abstract_inverted_index.existing | 186 |
| abstract_inverted_index.numerous | 84 |
| abstract_inverted_index.ontology | 194 |
| abstract_inverted_index.overcome | 76 |
| abstract_inverted_index.proposes | 141 |
| abstract_inverted_index.relevant | 42, 229 |
| abstract_inverted_index.resource | 8 |
| abstract_inverted_index.semantic | 67, 85, 104, 116, 126, 147, 216 |
| abstract_inverted_index.user.The | 50 |
| abstract_inverted_index.Ontolook, | 93 |
| abstract_inverted_index.developed | 91 |
| abstract_inverted_index.difficult | 38 |
| abstract_inverted_index.documents | 101, 131, 152, 175, 190, 210 |
| abstract_inverted_index.presented | 102 |
| abstract_inverted_index.processed | 178 |
| abstract_inverted_index.searching | 99 |
| abstract_inverted_index.structure | 16 |
| abstract_inverted_index.dictionary | 197 |
| abstract_inverted_index.extracting | 180 |
| abstract_inverted_index.other.From | 25 |
| abstract_inverted_index.similarity | 114, 127, 148, 217, 245 |
| abstract_inverted_index.techniques | 128 |
| abstract_inverted_index.appropriate | 134 |
| abstract_inverted_index.information | 7, 12, 30, 43, 57, 80, 238 |
| abstract_inverted_index.interlinked | 22 |
| abstract_inverted_index.significant | 100 |
| abstract_inverted_index.web.Several | 105 |
| abstract_inverted_index.architecture | 66 |
| abstract_inverted_index.documents.We | 226 |
| abstract_inverted_index.language.The | 64 |
| abstract_inverted_index.retrieval.In | 81 |
| abstract_inverted_index.consideration | 156 |
| abstract_inverted_index.relationships | 164, 183, 221, 230, 248 |
| abstract_inverted_index.significance. | 259 |
| abstract_inverted_index.prospects.This | 139 |
| abstract_inverted_index.synonyms.Finally, | 204 |
| cited_by_percentile_year.max | 94 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.00905918 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |