Reliable Attention Based Stereo Image Super-Resolution Network Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-6455023/v1
Stereo image super-resolution (StereoSR) exploits complementary information between paired views to enhance image reconstruction quality. Existing attention-based methods for cross-view feature interaction overlook a fundamental principle: effective stereo reconstruction requires compensating insufficient features in one view with reliable features from its counterpart. This observation raises a critical question of quantifying and leveraging feature reliability. To address this, we propose a Reliable Attention Based Stereo Image Super-resolution Network (RASSR), which explicitly models and utilizes feature uncertainty for guided cross-view interaction. The core component of RASSR is the Reliable Stereo Cross Attention Module (RSCAM), which dynamically identifies high-uncertainty regions in one view and adaptively selects complementary features from low-uncertainty regions in the alternative view. To support this uncertainty-driven interaction, we propose two key components: a Monte Carlo Feature Extraction Block (MCFEBlock) that quantifies feature uncertainty through Monte Carlo sampling, and a Feature Compensation Module (FCM) that mitigates information loss during the sampling process. Extensive experiments on the KITTI 2012, KITTI 2015, Middlebury, and Flickr1024 datasets demonstrate that, by enhancing attention reliability, RASSR achieves state-of-the-art performance, outperforming existing methods in both PSNR and SSIM metrics.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-6455023/v1
- https://www.researchsquare.com/article/rs-6455023/latest.pdf
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4411769726
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4411769726Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-6455023/v1Digital Object Identifier
- Title
-
Reliable Attention Based Stereo Image Super-Resolution NetworkWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-30Full publication date if available
- Authors
-
Xuanming Zhang, Jiawei Wu, Zuoyong Li, Zhengyi Tang, Kun Zeng, Mao‐Hsiung HungList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-6455023/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-6455023/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-6455023/latest.pdfDirect OA link when available
- Concepts
-
Artificial intelligence, Stereo image, Computer vision, Image (mathematics), Computer science, Resolution (logic), SuperresolutionTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4411769726 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-6455023/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-6455023/v1 |
| ids.openalex | https://openalex.org/W4411769726 |
| fwci | 0.0 |
| type | preprint |
| title | Reliable Attention Based Stereo Image Super-Resolution Network |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11105 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9969000220298767 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image Processing Techniques |
| topics[1].id | https://openalex.org/T11659 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9887999892234802 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Advanced Image Fusion Techniques |
| topics[2].id | https://openalex.org/T10531 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.988099992275238 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Vision and Imaging |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C154945302 |
| concepts[0].level | 1 |
| concepts[0].score | 0.5881986021995544 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[0].display_name | Artificial intelligence |
| concepts[1].id | https://openalex.org/C2987632653 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5822558403015137 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q7611220 |
| concepts[1].display_name | Stereo image |
| concepts[2].id | https://openalex.org/C31972630 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5585748553276062 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[2].display_name | Computer vision |
| concepts[3].id | https://openalex.org/C115961682 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5574044585227966 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[3].display_name | Image (mathematics) |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5409331321716309 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C138268822 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5181561708450317 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1051925 |
| concepts[5].display_name | Resolution (logic) |
| concepts[6].id | https://openalex.org/C141239990 |
| concepts[6].level | 3 |
| concepts[6].score | 0.48180240392684937 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q957423 |
| concepts[6].display_name | Superresolution |
| keywords[0].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[0].score | 0.5881986021995544 |
| keywords[0].display_name | Artificial intelligence |
| keywords[1].id | https://openalex.org/keywords/stereo-image |
| keywords[1].score | 0.5822558403015137 |
| keywords[1].display_name | Stereo image |
| keywords[2].id | https://openalex.org/keywords/computer-vision |
| keywords[2].score | 0.5585748553276062 |
| keywords[2].display_name | Computer vision |
| keywords[3].id | https://openalex.org/keywords/image |
| keywords[3].score | 0.5574044585227966 |
| keywords[3].display_name | Image (mathematics) |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.5409331321716309 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/resolution |
| keywords[5].score | 0.5181561708450317 |
| keywords[5].display_name | Resolution (logic) |
| keywords[6].id | https://openalex.org/keywords/superresolution |
| keywords[6].score | 0.48180240392684937 |
| keywords[6].display_name | Superresolution |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-6455023/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-6455023/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-6455023/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5063061958 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9208-1845 |
| authorships[0].author.display_name | Xuanming Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I83791580 |
| authorships[0].affiliations[0].raw_affiliation_string | Fujian University of Technology |
| authorships[0].institutions[0].id | https://openalex.org/I83791580 |
| authorships[0].institutions[0].ror | https://ror.org/03c8fdb16 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I83791580 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Fujian University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Xuanming Zhang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Fujian University of Technology |
| authorships[1].author.id | https://openalex.org/A5009633508 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6251-2202 |
| authorships[1].author.display_name | Jiawei Wu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I157773358 |
| authorships[1].affiliations[0].raw_affiliation_string | Shenzhen Campus of Sun Yat-sen University |
| authorships[1].institutions[0].id | https://openalex.org/I157773358 |
| authorships[1].institutions[0].ror | https://ror.org/0064kty71 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I157773358 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Sun Yat-sen University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiawei Wu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Shenzhen Campus of Sun Yat-sen University |
| authorships[2].author.id | https://openalex.org/A5091320821 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0952-9915 |
| authorships[2].author.display_name | Zuoyong Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I354108 |
| authorships[2].affiliations[0].raw_affiliation_string | Minjiang University |
| authorships[2].institutions[0].id | https://openalex.org/I354108 |
| authorships[2].institutions[0].ror | https://ror.org/00s7tkw17 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I354108 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Minjiang University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zuoyong Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Minjiang University |
| authorships[3].author.id | https://openalex.org/A5040733657 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9306-6038 |
| authorships[3].author.display_name | Zhengyi Tang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I83791580 |
| authorships[3].affiliations[0].raw_affiliation_string | Fujian University of Technology |
| authorships[3].institutions[0].id | https://openalex.org/I83791580 |
| authorships[3].institutions[0].ror | https://ror.org/03c8fdb16 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I83791580 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Fujian University of Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhengyi Tang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Fujian University of Technology |
| authorships[4].author.id | https://openalex.org/A5021459831 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-6713-2871 |
| authorships[4].author.display_name | Kun Zeng |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I354108 |
| authorships[4].affiliations[0].raw_affiliation_string | Minjiang University |
| authorships[4].institutions[0].id | https://openalex.org/I354108 |
| authorships[4].institutions[0].ror | https://ror.org/00s7tkw17 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I354108 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Minjiang University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kun Zeng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Minjiang University |
| authorships[5].author.id | https://openalex.org/A5109808079 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Mao‐Hsiung Hung |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I83791580 |
| authorships[5].affiliations[0].raw_affiliation_string | Fujian University of Technology |
| authorships[5].institutions[0].id | https://openalex.org/I83791580 |
| authorships[5].institutions[0].ror | https://ror.org/03c8fdb16 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I83791580 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Fujian University of Technology |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Mao-Hsiung Hung |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Fujian University of Technology |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-6455023/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Reliable Attention Based Stereo Image Super-Resolution Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11105 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9969000220298767 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image Processing Techniques |
| related_works | https://openalex.org/W2161229648, https://openalex.org/W2143529858, https://openalex.org/W4367590696, https://openalex.org/W2056165575, https://openalex.org/W2358774654, https://openalex.org/W2071240554, https://openalex.org/W1957820763, https://openalex.org/W2051516969, https://openalex.org/W2808508510, https://openalex.org/W2391245565 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.21203/rs.3.rs-6455023/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-6455023/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-6455023/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-6455023/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-6455023/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-6455023/v1 |
| publication_date | 2025-06-30 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 24, 46, 60, 123, 139 |
| abstract_inverted_index.To | 55, 113 |
| abstract_inverted_index.by | 166 |
| abstract_inverted_index.in | 34, 98, 109, 177 |
| abstract_inverted_index.is | 85 |
| abstract_inverted_index.of | 49, 83 |
| abstract_inverted_index.on | 154 |
| abstract_inverted_index.to | 11 |
| abstract_inverted_index.we | 58, 118 |
| abstract_inverted_index.The | 80 |
| abstract_inverted_index.and | 51, 72, 101, 138, 161, 180 |
| abstract_inverted_index.for | 19, 76 |
| abstract_inverted_index.its | 41 |
| abstract_inverted_index.key | 121 |
| abstract_inverted_index.one | 35, 99 |
| abstract_inverted_index.the | 86, 110, 149, 155 |
| abstract_inverted_index.two | 120 |
| abstract_inverted_index.PSNR | 179 |
| abstract_inverted_index.SSIM | 181 |
| abstract_inverted_index.This | 43 |
| abstract_inverted_index.both | 178 |
| abstract_inverted_index.core | 81 |
| abstract_inverted_index.from | 40, 106 |
| abstract_inverted_index.loss | 147 |
| abstract_inverted_index.that | 130, 144 |
| abstract_inverted_index.this | 115 |
| abstract_inverted_index.view | 36, 100 |
| abstract_inverted_index.with | 37 |
| abstract_inverted_index.(FCM) | 143 |
| abstract_inverted_index.2012, | 157 |
| abstract_inverted_index.2015, | 159 |
| abstract_inverted_index.Based | 63 |
| abstract_inverted_index.Block | 128 |
| abstract_inverted_index.Carlo | 125, 136 |
| abstract_inverted_index.Cross | 89 |
| abstract_inverted_index.Image | 65 |
| abstract_inverted_index.KITTI | 156, 158 |
| abstract_inverted_index.Monte | 124, 135 |
| abstract_inverted_index.RASSR | 84, 170 |
| abstract_inverted_index.image | 2, 13 |
| abstract_inverted_index.that, | 165 |
| abstract_inverted_index.this, | 57 |
| abstract_inverted_index.view. | 112 |
| abstract_inverted_index.views | 10 |
| abstract_inverted_index.which | 69, 93 |
| abstract_inverted_index.Module | 91, 142 |
| abstract_inverted_index.Stereo | 1, 64, 88 |
| abstract_inverted_index.during | 148 |
| abstract_inverted_index.guided | 77 |
| abstract_inverted_index.models | 71 |
| abstract_inverted_index.paired | 9 |
| abstract_inverted_index.raises | 45 |
| abstract_inverted_index.stereo | 28 |
| abstract_inverted_index.Feature | 126, 140 |
| abstract_inverted_index.Network | 67 |
| abstract_inverted_index.address | 56 |
| abstract_inverted_index.between | 8 |
| abstract_inverted_index.enhance | 12 |
| abstract_inverted_index.feature | 21, 53, 74, 132 |
| abstract_inverted_index.methods | 18, 176 |
| abstract_inverted_index.propose | 59, 119 |
| abstract_inverted_index.regions | 97, 108 |
| abstract_inverted_index.selects | 103 |
| abstract_inverted_index.support | 114 |
| abstract_inverted_index.through | 134 |
| abstract_inverted_index.(RASSR), | 68 |
| abstract_inverted_index.(RSCAM), | 92 |
| abstract_inverted_index.Existing | 16 |
| abstract_inverted_index.Reliable | 61, 87 |
| abstract_inverted_index.achieves | 171 |
| abstract_inverted_index.critical | 47 |
| abstract_inverted_index.datasets | 163 |
| abstract_inverted_index.existing | 175 |
| abstract_inverted_index.exploits | 5 |
| abstract_inverted_index.features | 33, 39, 105 |
| abstract_inverted_index.metrics. | 182 |
| abstract_inverted_index.overlook | 23 |
| abstract_inverted_index.process. | 151 |
| abstract_inverted_index.quality. | 15 |
| abstract_inverted_index.question | 48 |
| abstract_inverted_index.reliable | 38 |
| abstract_inverted_index.requires | 30 |
| abstract_inverted_index.sampling | 150 |
| abstract_inverted_index.utilizes | 73 |
| abstract_inverted_index.Attention | 62, 90 |
| abstract_inverted_index.Extensive | 152 |
| abstract_inverted_index.attention | 168 |
| abstract_inverted_index.component | 82 |
| abstract_inverted_index.effective | 27 |
| abstract_inverted_index.enhancing | 167 |
| abstract_inverted_index.mitigates | 145 |
| abstract_inverted_index.sampling, | 137 |
| abstract_inverted_index.(StereoSR) | 4 |
| abstract_inverted_index.Extraction | 127 |
| abstract_inverted_index.Flickr1024 | 162 |
| abstract_inverted_index.adaptively | 102 |
| abstract_inverted_index.cross-view | 20, 78 |
| abstract_inverted_index.explicitly | 70 |
| abstract_inverted_index.identifies | 95 |
| abstract_inverted_index.leveraging | 52 |
| abstract_inverted_index.principle: | 26 |
| abstract_inverted_index.quantifies | 131 |
| abstract_inverted_index.(MCFEBlock) | 129 |
| abstract_inverted_index.Middlebury, | 160 |
| abstract_inverted_index.alternative | 111 |
| abstract_inverted_index.components: | 122 |
| abstract_inverted_index.demonstrate | 164 |
| abstract_inverted_index.dynamically | 94 |
| abstract_inverted_index.experiments | 153 |
| abstract_inverted_index.fundamental | 25 |
| abstract_inverted_index.information | 7, 146 |
| abstract_inverted_index.interaction | 22 |
| abstract_inverted_index.observation | 44 |
| abstract_inverted_index.quantifying | 50 |
| abstract_inverted_index.uncertainty | 75, 133 |
| abstract_inverted_index.Compensation | 141 |
| abstract_inverted_index.compensating | 31 |
| abstract_inverted_index.counterpart. | 42 |
| abstract_inverted_index.insufficient | 32 |
| abstract_inverted_index.interaction, | 117 |
| abstract_inverted_index.interaction. | 79 |
| abstract_inverted_index.performance, | 173 |
| abstract_inverted_index.reliability, | 169 |
| abstract_inverted_index.reliability. | 54 |
| abstract_inverted_index.complementary | 6, 104 |
| abstract_inverted_index.outperforming | 174 |
| abstract_inverted_index.reconstruction | 14, 29 |
| abstract_inverted_index.attention-based | 17 |
| abstract_inverted_index.low-uncertainty | 107 |
| abstract_inverted_index.Super-resolution | 66 |
| abstract_inverted_index.high-uncertainty | 96 |
| abstract_inverted_index.state-of-the-art | 172 |
| abstract_inverted_index.super-resolution | 3 |
| abstract_inverted_index.uncertainty-driven | 116 |
| abstract_inverted_index.<title>Abstract</title> | 0 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.25115831 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |