Remaining Useful Life Prediction Based on Cross-Temporal Dynamic Graph Convolutional Network Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.17531/ein/203249
Taking advantage of deep learning (DL) to extract hidden degradation signals from machinery monitoring data has led to significant advancements in predicting equipment's remaining useful life (RUL). However, existing methods that use similarity and adaptive adjacency matrices to construct graphs fail to reflect sensor relationships accurately. This article presents a cross-temporal dynamic graph convolutional network (CTDGCN) for RUL prediction to address this issue. The CTDGCN combines cross-temporal modeling with dynamic spatio-temporal graph construction, collecting multi-sensor time series signals to create dynamic graph embeddings. By constructing a cross-temporal sensor network, temporal and spatial features are extracted to design a decay graph based on temporal distance. This model utilizes decay and cross-temporal pooling layers to aggregate information and capture complicated spatio-temporal dependencies. Studies conducted on two cases indicate that the CTDGCN model significantly outperforms existing models in RUL prediction tasks.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.17531/ein/203249
- https://ein.org.pl/pdf-203249-123750?filename=Remaining Useful Life.pdf
- OA Status
- gold
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408889196
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408889196Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.17531/ein/203249Digital Object Identifier
- Title
-
Remaining Useful Life Prediction Based on Cross-Temporal Dynamic Graph Convolutional NetworkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-03-27Full publication date if available
- Authors
-
Liwei Deng, J. Liu, Mei Liu, Yue Cao, Chenglin Wen, Xingchao DengList of authors in order
- Landing page
-
https://doi.org/10.17531/ein/203249Publisher landing page
- PDF URL
-
https://ein.org.pl/pdf-203249-123750?filename=Remaining Useful Life.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ein.org.pl/pdf-203249-123750?filename=Remaining Useful Life.pdfDirect OA link when available
- Concepts
-
Computer science, Graph, Theoretical computer scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408889196 |
|---|---|
| doi | https://doi.org/10.17531/ein/203249 |
| ids.doi | https://doi.org/10.17531/ein/203249 |
| ids.openalex | https://openalex.org/W4408889196 |
| fwci | 0.0 |
| type | article |
| title | Remaining Useful Life Prediction Based on Cross-Temporal Dynamic Graph Convolutional Network |
| biblio.issue | 4 |
| biblio.volume | 27 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.7580999732017517 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.656000018119812 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T11396 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.6538000106811523 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3605 |
| topics[2].subfield.display_name | Health Information Management |
| topics[2].display_name | Artificial Intelligence in Healthcare |
| is_xpac | False |
| apc_list.value | 410 |
| apc_list.currency | EUR |
| apc_list.value_usd | 442 |
| apc_paid.value | 410 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 442 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.5959573984146118 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C132525143 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5657690167427063 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[1].display_name | Graph |
| concepts[2].id | https://openalex.org/C80444323 |
| concepts[2].level | 1 |
| concepts[2].score | 0.1830800175666809 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[2].display_name | Theoretical computer science |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.5959573984146118 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/graph |
| keywords[1].score | 0.5657690167427063 |
| keywords[1].display_name | Graph |
| keywords[2].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[2].score | 0.1830800175666809 |
| keywords[2].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.17531/ein/203249 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210233445 |
| locations[0].source.issn | 1507-2711, 2956-3860 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1507-2711 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Eksploatacja i Niezawodnosc - Maintenance and Reliability |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ein.org.pl/pdf-203249-123750?filename=Remaining Useful Life.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Eksploatacja i Niezawodność – Maintenance and Reliability |
| locations[0].landing_page_url | https://doi.org/10.17531/ein/203249 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5108050767 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3996-5569 |
| authorships[0].author.display_name | Liwei Deng |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Liwei Deng |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5050492063 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-1169-9521 |
| authorships[1].author.display_name | J. Liu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jixin Liu |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100347934 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0445-941X |
| authorships[2].author.display_name | Mei Liu |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Mei Liu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101593662 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1679-0444 |
| authorships[3].author.display_name | Yue Cao |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yue Cao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5063953138 |
| authorships[4].author.orcid | https://orcid.org/0009-0000-6391-1168 |
| authorships[4].author.display_name | Chenglin Wen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chenglin Wen |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5075041535 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8423-6197 |
| authorships[5].author.display_name | Xingchao Deng |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Xingchao Deng |
| authorships[5].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ein.org.pl/pdf-203249-123750?filename=Remaining Useful Life.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Remaining Useful Life Prediction Based on Cross-Temporal Dynamic Graph Convolutional Network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.7580999732017517 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W4391913857, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W2001405890, https://openalex.org/W4396696052 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.17531/ein/203249 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210233445 |
| best_oa_location.source.issn | 1507-2711, 2956-3860 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1507-2711 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Eksploatacja i Niezawodnosc - Maintenance and Reliability |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ein.org.pl/pdf-203249-123750?filename=Remaining Useful Life.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Eksploatacja i Niezawodność – Maintenance and Reliability |
| best_oa_location.landing_page_url | https://doi.org/10.17531/ein/203249 |
| primary_location.id | doi:10.17531/ein/203249 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210233445 |
| primary_location.source.issn | 1507-2711, 2956-3860 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1507-2711 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Eksploatacja i Niezawodnosc - Maintenance and Reliability |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ein.org.pl/pdf-203249-123750?filename=Remaining Useful Life.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Eksploatacja i Niezawodność – Maintenance and Reliability |
| primary_location.landing_page_url | https://doi.org/10.17531/ein/203249 |
| publication_date | 2025-03-27 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 49, 85, 97 |
| abstract_inverted_index.By | 83 |
| abstract_inverted_index.in | 20, 134 |
| abstract_inverted_index.of | 2 |
| abstract_inverted_index.on | 101, 122 |
| abstract_inverted_index.to | 6, 17, 37, 41, 59, 78, 95, 112 |
| abstract_inverted_index.RUL | 57, 135 |
| abstract_inverted_index.The | 63 |
| abstract_inverted_index.and | 33, 90, 108, 115 |
| abstract_inverted_index.are | 93 |
| abstract_inverted_index.for | 56 |
| abstract_inverted_index.has | 15 |
| abstract_inverted_index.led | 16 |
| abstract_inverted_index.the | 127 |
| abstract_inverted_index.two | 123 |
| abstract_inverted_index.use | 31 |
| abstract_inverted_index.(DL) | 5 |
| abstract_inverted_index.This | 46, 104 |
| abstract_inverted_index.data | 14 |
| abstract_inverted_index.deep | 3 |
| abstract_inverted_index.fail | 40 |
| abstract_inverted_index.from | 11 |
| abstract_inverted_index.life | 25 |
| abstract_inverted_index.that | 30, 126 |
| abstract_inverted_index.this | 61 |
| abstract_inverted_index.time | 75 |
| abstract_inverted_index.with | 68 |
| abstract_inverted_index.based | 100 |
| abstract_inverted_index.cases | 124 |
| abstract_inverted_index.decay | 98, 107 |
| abstract_inverted_index.graph | 52, 71, 81, 99 |
| abstract_inverted_index.model | 105, 129 |
| abstract_inverted_index.(RUL). | 26 |
| abstract_inverted_index.CTDGCN | 64, 128 |
| abstract_inverted_index.Taking | 0 |
| abstract_inverted_index.create | 79 |
| abstract_inverted_index.design | 96 |
| abstract_inverted_index.graphs | 39 |
| abstract_inverted_index.hidden | 8 |
| abstract_inverted_index.issue. | 62 |
| abstract_inverted_index.layers | 111 |
| abstract_inverted_index.models | 133 |
| abstract_inverted_index.sensor | 43, 87 |
| abstract_inverted_index.series | 76 |
| abstract_inverted_index.tasks. | 137 |
| abstract_inverted_index.useful | 24 |
| abstract_inverted_index.Studies | 120 |
| abstract_inverted_index.address | 60 |
| abstract_inverted_index.article | 47 |
| abstract_inverted_index.capture | 116 |
| abstract_inverted_index.dynamic | 51, 69, 80 |
| abstract_inverted_index.extract | 7 |
| abstract_inverted_index.methods | 29 |
| abstract_inverted_index.network | 54 |
| abstract_inverted_index.pooling | 110 |
| abstract_inverted_index.reflect | 42 |
| abstract_inverted_index.signals | 10, 77 |
| abstract_inverted_index.spatial | 91 |
| abstract_inverted_index.(CTDGCN) | 55 |
| abstract_inverted_index.However, | 27 |
| abstract_inverted_index.adaptive | 34 |
| abstract_inverted_index.combines | 65 |
| abstract_inverted_index.existing | 28, 132 |
| abstract_inverted_index.features | 92 |
| abstract_inverted_index.indicate | 125 |
| abstract_inverted_index.learning | 4 |
| abstract_inverted_index.matrices | 36 |
| abstract_inverted_index.modeling | 67 |
| abstract_inverted_index.network, | 88 |
| abstract_inverted_index.presents | 48 |
| abstract_inverted_index.temporal | 89, 102 |
| abstract_inverted_index.utilizes | 106 |
| abstract_inverted_index.adjacency | 35 |
| abstract_inverted_index.advantage | 1 |
| abstract_inverted_index.aggregate | 113 |
| abstract_inverted_index.conducted | 121 |
| abstract_inverted_index.construct | 38 |
| abstract_inverted_index.distance. | 103 |
| abstract_inverted_index.extracted | 94 |
| abstract_inverted_index.machinery | 12 |
| abstract_inverted_index.remaining | 23 |
| abstract_inverted_index.collecting | 73 |
| abstract_inverted_index.monitoring | 13 |
| abstract_inverted_index.predicting | 21 |
| abstract_inverted_index.prediction | 58, 136 |
| abstract_inverted_index.similarity | 32 |
| abstract_inverted_index.accurately. | 45 |
| abstract_inverted_index.complicated | 117 |
| abstract_inverted_index.degradation | 9 |
| abstract_inverted_index.embeddings. | 82 |
| abstract_inverted_index.equipment's | 22 |
| abstract_inverted_index.information | 114 |
| abstract_inverted_index.outperforms | 131 |
| abstract_inverted_index.significant | 18 |
| abstract_inverted_index.advancements | 19 |
| abstract_inverted_index.constructing | 84 |
| abstract_inverted_index.multi-sensor | 74 |
| abstract_inverted_index.construction, | 72 |
| abstract_inverted_index.convolutional | 53 |
| abstract_inverted_index.dependencies. | 119 |
| abstract_inverted_index.relationships | 44 |
| abstract_inverted_index.significantly | 130 |
| abstract_inverted_index.cross-temporal | 50, 66, 86, 109 |
| abstract_inverted_index.spatio-temporal | 70, 118 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.04191462 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |