Remaining Useful Life Prediction Using Temporal Deep Degradation Network for Complex Machinery with Attention-based Feature Extraction Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2202.10916
The precise estimate of remaining useful life (RUL) is vital for the prognostic analysis and predictive maintenance that can significantly reduce failure rate and maintenance costs. The degradation-related features extracted from the sensor streaming data with neural networks can dramatically improve the accuracy of the RUL prediction. The Temporal deep degradation network (TDDN) model is proposed to make the RUL prediction with the degradation-related features given by the one-dimensional convolutional neural network (1D CNN) feature extraction and attention mechanism. 1D CNN is used to extract the temporal features from the streaming sensor data. Temporal features have monotonic degradation trends from the fluctuating raw sensor streaming data. Attention mechanism can improve the RUL prediction performance by capturing the fault characteristics and the degradation development with the attention weights. The performance of the TDDN model is evaluated on the public C-MAPSS dataset and compared with the existing methods. The results show that the TDDN model can achieve the best RUL prediction accuracy in complex conditions compared to current machine learning models. The degradation-related features extracted from the high-dimension sensor streaming data demonstrate the clear degradation trajectories and degradation stages that enable TDDN to predict the turbofan-engine RUL accurately and efficiently.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2202.10916
- https://arxiv.org/pdf/2202.10916
- OA Status
- green
- Cited By
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4225645141
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4225645141Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2202.10916Digital Object Identifier
- Title
-
Remaining Useful Life Prediction Using Temporal Deep Degradation Network for Complex Machinery with Attention-based Feature ExtractionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-21Full publication date if available
- Authors
-
Yuwen Qin, Ningbo Cai, Chen Gao, Yadong Zhang, Yonghong Cheng, Xin ChenList of authors in order
- Landing page
-
https://arxiv.org/abs/2202.10916Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2202.10916Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2202.10916Direct OA link when available
- Concepts
-
Degradation (telecommunications), Computer science, Convolutional neural network, Feature extraction, Artificial intelligence, Artificial neural network, Deep learning, Fault (geology), Turbofan, Data mining, Pattern recognition (psychology), Machine learning, Engineering, Telecommunications, Automotive engineering, Seismology, GeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 2, 2023: 2, 2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4225645141 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2202.10916 |
| ids.doi | https://doi.org/10.48550/arxiv.2202.10916 |
| ids.openalex | https://openalex.org/W4225645141 |
| fwci | |
| type | preprint |
| title | Remaining Useful Life Prediction Using Temporal Deep Degradation Network for Complex Machinery with Attention-based Feature Extraction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10780 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9860000014305115 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2213 |
| topics[0].subfield.display_name | Safety, Risk, Reliability and Quality |
| topics[0].display_name | Reliability and Maintenance Optimization |
| topics[1].id | https://openalex.org/T10220 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9778000116348267 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2207 |
| topics[1].subfield.display_name | Control and Systems Engineering |
| topics[1].display_name | Machine Fault Diagnosis Techniques |
| topics[2].id | https://openalex.org/T13690 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9667999744415283 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3607 |
| topics[2].subfield.display_name | Medical Laboratory Technology |
| topics[2].display_name | Quality and Safety in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779679103 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6944690346717834 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5251805 |
| concepts[0].display_name | Degradation (telecommunications) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6819721460342407 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6025118231773376 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C52622490 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5900737047195435 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[3].display_name | Feature extraction |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5491129159927368 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.543760359287262 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4698207378387451 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C175551986 |
| concepts[7].level | 2 |
| concepts[7].score | 0.456726610660553 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q47089 |
| concepts[7].display_name | Fault (geology) |
| concepts[8].id | https://openalex.org/C110050840 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4495493471622467 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q654051 |
| concepts[8].display_name | Turbofan |
| concepts[9].id | https://openalex.org/C124101348 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3938177525997162 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[9].display_name | Data mining |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.35844844579696655 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.32954132556915283 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.19186270236968994 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C76155785 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[13].display_name | Telecommunications |
| concepts[14].id | https://openalex.org/C171146098 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q124192 |
| concepts[14].display_name | Automotive engineering |
| concepts[15].id | https://openalex.org/C165205528 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q83371 |
| concepts[15].display_name | Seismology |
| concepts[16].id | https://openalex.org/C127313418 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[16].display_name | Geology |
| keywords[0].id | https://openalex.org/keywords/degradation |
| keywords[0].score | 0.6944690346717834 |
| keywords[0].display_name | Degradation (telecommunications) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6819721460342407 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.6025118231773376 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/feature-extraction |
| keywords[3].score | 0.5900737047195435 |
| keywords[3].display_name | Feature extraction |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5491129159927368 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.543760359287262 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.4698207378387451 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/fault |
| keywords[7].score | 0.456726610660553 |
| keywords[7].display_name | Fault (geology) |
| keywords[8].id | https://openalex.org/keywords/turbofan |
| keywords[8].score | 0.4495493471622467 |
| keywords[8].display_name | Turbofan |
| keywords[9].id | https://openalex.org/keywords/data-mining |
| keywords[9].score | 0.3938177525997162 |
| keywords[9].display_name | Data mining |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.35844844579696655 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.32954132556915283 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.19186270236968994 |
| keywords[12].display_name | Engineering |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2202.10916 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2202.10916 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2202.10916 |
| locations[1].id | doi:10.48550/arxiv.2202.10916 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2202.10916 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101546087 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9879-1514 |
| authorships[0].author.display_name | Yuwen Qin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qin, Yuwen |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5064068343 |
| authorships[1].author.orcid | https://orcid.org/0009-0004-1447-9558 |
| authorships[1].author.display_name | Ningbo Cai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Cai, Ningbo |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5060904283 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-8236-1947 |
| authorships[2].author.display_name | Chen Gao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gao, Chen |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100330171 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8268-165X |
| authorships[3].author.display_name | Yadong Zhang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhang, Yadong |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5026267076 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2528-6423 |
| authorships[4].author.display_name | Yonghong Cheng |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Cheng, Yonghong |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5100658967 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8213-4704 |
| authorships[5].author.display_name | Xin Chen |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Chen, Xin |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2202.10916 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-05-05T00:00:00 |
| display_name | Remaining Useful Life Prediction Using Temporal Deep Degradation Network for Complex Machinery with Attention-based Feature Extraction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10780 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9860000014305115 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2213 |
| primary_topic.subfield.display_name | Safety, Risk, Reliability and Quality |
| primary_topic.display_name | Reliability and Maintenance Optimization |
| related_works | https://openalex.org/W4233568029, https://openalex.org/W2967774773, https://openalex.org/W4226493464, https://openalex.org/W4312417841, https://openalex.org/W3193565141, https://openalex.org/W3133861977, https://openalex.org/W2951211570, https://openalex.org/W3103566983, https://openalex.org/W3167935049, https://openalex.org/W3029198973 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 2 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2202.10916 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2202.10916 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2202.10916 |
| primary_location.id | pmh:oai:arXiv.org:2202.10916 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2202.10916 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2202.10916 |
| publication_date | 2022-02-21 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.1D | 79 |
| abstract_inverted_index.by | 66, 114 |
| abstract_inverted_index.in | 160 |
| abstract_inverted_index.is | 8, 54, 81, 133 |
| abstract_inverted_index.of | 3, 43, 129 |
| abstract_inverted_index.on | 135 |
| abstract_inverted_index.to | 56, 83, 164, 190 |
| abstract_inverted_index.(1D | 72 |
| abstract_inverted_index.CNN | 80 |
| abstract_inverted_index.RUL | 45, 59, 111, 157, 194 |
| abstract_inverted_index.The | 0, 26, 47, 127, 146, 169 |
| abstract_inverted_index.and | 14, 23, 76, 119, 140, 184, 196 |
| abstract_inverted_index.can | 18, 38, 108, 153 |
| abstract_inverted_index.for | 10 |
| abstract_inverted_index.raw | 102 |
| abstract_inverted_index.the | 11, 31, 41, 44, 58, 62, 67, 85, 89, 100, 110, 116, 120, 124, 130, 136, 143, 150, 155, 174, 180, 192 |
| abstract_inverted_index.CNN) | 73 |
| abstract_inverted_index.TDDN | 131, 151, 189 |
| abstract_inverted_index.best | 156 |
| abstract_inverted_index.data | 34, 178 |
| abstract_inverted_index.deep | 49 |
| abstract_inverted_index.from | 30, 88, 99, 173 |
| abstract_inverted_index.have | 95 |
| abstract_inverted_index.life | 6 |
| abstract_inverted_index.make | 57 |
| abstract_inverted_index.rate | 22 |
| abstract_inverted_index.show | 148 |
| abstract_inverted_index.that | 17, 149, 187 |
| abstract_inverted_index.used | 82 |
| abstract_inverted_index.with | 35, 61, 123, 142 |
| abstract_inverted_index.(RUL) | 7 |
| abstract_inverted_index.clear | 181 |
| abstract_inverted_index.data. | 92, 105 |
| abstract_inverted_index.fault | 117 |
| abstract_inverted_index.given | 65 |
| abstract_inverted_index.model | 53, 132, 152 |
| abstract_inverted_index.vital | 9 |
| abstract_inverted_index.(TDDN) | 52 |
| abstract_inverted_index.costs. | 25 |
| abstract_inverted_index.enable | 188 |
| abstract_inverted_index.neural | 36, 70 |
| abstract_inverted_index.public | 137 |
| abstract_inverted_index.reduce | 20 |
| abstract_inverted_index.sensor | 32, 91, 103, 176 |
| abstract_inverted_index.stages | 186 |
| abstract_inverted_index.trends | 98 |
| abstract_inverted_index.useful | 5 |
| abstract_inverted_index.C-MAPSS | 138 |
| abstract_inverted_index.achieve | 154 |
| abstract_inverted_index.complex | 161 |
| abstract_inverted_index.current | 165 |
| abstract_inverted_index.dataset | 139 |
| abstract_inverted_index.extract | 84 |
| abstract_inverted_index.failure | 21 |
| abstract_inverted_index.feature | 74 |
| abstract_inverted_index.improve | 40, 109 |
| abstract_inverted_index.machine | 166 |
| abstract_inverted_index.models. | 168 |
| abstract_inverted_index.network | 51, 71 |
| abstract_inverted_index.precise | 1 |
| abstract_inverted_index.predict | 191 |
| abstract_inverted_index.results | 147 |
| abstract_inverted_index.Temporal | 48, 93 |
| abstract_inverted_index.accuracy | 42, 159 |
| abstract_inverted_index.analysis | 13 |
| abstract_inverted_index.compared | 141, 163 |
| abstract_inverted_index.estimate | 2 |
| abstract_inverted_index.existing | 144 |
| abstract_inverted_index.features | 28, 64, 87, 94, 171 |
| abstract_inverted_index.learning | 167 |
| abstract_inverted_index.methods. | 145 |
| abstract_inverted_index.networks | 37 |
| abstract_inverted_index.proposed | 55 |
| abstract_inverted_index.temporal | 86 |
| abstract_inverted_index.weights. | 126 |
| abstract_inverted_index.Attention | 106 |
| abstract_inverted_index.attention | 77, 125 |
| abstract_inverted_index.capturing | 115 |
| abstract_inverted_index.evaluated | 134 |
| abstract_inverted_index.extracted | 29, 172 |
| abstract_inverted_index.mechanism | 107 |
| abstract_inverted_index.monotonic | 96 |
| abstract_inverted_index.remaining | 4 |
| abstract_inverted_index.streaming | 33, 90, 104, 177 |
| abstract_inverted_index.accurately | 195 |
| abstract_inverted_index.conditions | 162 |
| abstract_inverted_index.extraction | 75 |
| abstract_inverted_index.mechanism. | 78 |
| abstract_inverted_index.prediction | 60, 112, 158 |
| abstract_inverted_index.predictive | 15 |
| abstract_inverted_index.prognostic | 12 |
| abstract_inverted_index.degradation | 50, 97, 121, 182, 185 |
| abstract_inverted_index.demonstrate | 179 |
| abstract_inverted_index.development | 122 |
| abstract_inverted_index.fluctuating | 101 |
| abstract_inverted_index.maintenance | 16, 24 |
| abstract_inverted_index.performance | 113, 128 |
| abstract_inverted_index.prediction. | 46 |
| abstract_inverted_index.dramatically | 39 |
| abstract_inverted_index.efficiently. | 197 |
| abstract_inverted_index.trajectories | 183 |
| abstract_inverted_index.convolutional | 69 |
| abstract_inverted_index.significantly | 19 |
| abstract_inverted_index.high-dimension | 175 |
| abstract_inverted_index.characteristics | 118 |
| abstract_inverted_index.one-dimensional | 68 |
| abstract_inverted_index.turbofan-engine | 193 |
| abstract_inverted_index.degradation-related | 27, 63, 170 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/12 |
| sustainable_development_goals[0].score | 0.5299999713897705 |
| sustainable_development_goals[0].display_name | Responsible consumption and production |
| citation_normalized_percentile |