Remember What You Want to Forget: Algorithms for Machine Unlearning Article Swipe
YOU?
·
· 2021
· Open Access
·
We study the problem of unlearning datapoints from a learnt model. The learner first receives a dataset $S$ drawn i.i.d. from an unknown distribution, and outputs a model $\widehat{w}$ that performs well on unseen samples from the same distribution. However, at some point in the future, any training datapoint $z \in S$ can request to be unlearned, thus prompting the learner to modify its output model while still ensuring the same accuracy guarantees. We initiate a rigorous study of generalization in machine unlearning, where the goal is to perform well on previously unseen datapoints. Our focus is on both computational and storage complexity. For the setting of convex losses, we provide an unlearning algorithm that can unlearn up to $O(n/d^{1/4})$ samples, where $d$ is the problem dimension. In comparison, in general, differentially private learning (which implies unlearning) only guarantees deletion of $O(n/d^{1/2})$ samples. This demonstrates a novel separation between differential privacy and machine unlearning.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://arxiv.org/abs/2103.03279
- OA Status
- green
- Related Works
- 19
- OpenAlex ID
- https://openalex.org/W3213973860
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3213973860Canonical identifier for this work in OpenAlex
- Title
-
Remember What You Want to Forget: Algorithms for Machine UnlearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-06Full publication date if available
- Authors
-
Ayush Sekhari, Jayadev Acharya, Gautam Kamath, Ananda Theertha SureshList of authors in order
- Landing page
-
https://arxiv.org/abs/2103.03279Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/abs/2103.03279Direct OA link when available
- Concepts
-
Generalization, Computer science, Focus (optics), Point (geometry), VC dimension, Dimension (graph theory), Artificial intelligence, Regular polygon, Algorithm, Machine learning, Differential privacy, Mathematics, Combinatorics, Mathematical analysis, Geometry, Optics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
19Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3213973860 |
|---|---|
| doi | |
| ids.mag | 3213973860 |
| ids.openalex | https://openalex.org/W3213973860 |
| fwci | 0.0 |
| type | article |
| title | Remember What You Want to Forget: Algorithms for Machine Unlearning |
| biblio.issue | |
| biblio.volume | 34 |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10764 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Privacy-Preserving Technologies in Data |
| topics[1].id | https://openalex.org/T11612 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9947999715805054 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Stochastic Gradient Optimization Techniques |
| topics[2].id | https://openalex.org/T10237 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9894999861717224 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Cryptography and Data Security |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C177148314 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7377480864524841 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[0].display_name | Generalization |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7005590200424194 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C192209626 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6368278861045837 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q190909 |
| concepts[2].display_name | Focus (optics) |
| concepts[3].id | https://openalex.org/C28719098 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6292919516563416 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q44946 |
| concepts[3].display_name | Point (geometry) |
| concepts[4].id | https://openalex.org/C119322782 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5924860835075378 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2662236 |
| concepts[4].display_name | VC dimension |
| concepts[5].id | https://openalex.org/C33676613 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5707855820655823 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[5].display_name | Dimension (graph theory) |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.559937059879303 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C112680207 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5077899098396301 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q714886 |
| concepts[7].display_name | Regular polygon |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4501573145389557 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.449449747800827 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C23130292 |
| concepts[10].level | 2 |
| concepts[10].score | 0.44047749042510986 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q5275358 |
| concepts[10].display_name | Differential privacy |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.17119133472442627 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C114614502 |
| concepts[12].level | 1 |
| concepts[12].score | 0.09044107794761658 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[12].display_name | Combinatorics |
| concepts[13].id | https://openalex.org/C134306372 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[13].display_name | Mathematical analysis |
| concepts[14].id | https://openalex.org/C2524010 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[14].display_name | Geometry |
| concepts[15].id | https://openalex.org/C120665830 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[15].display_name | Optics |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/generalization |
| keywords[0].score | 0.7377480864524841 |
| keywords[0].display_name | Generalization |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7005590200424194 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/focus |
| keywords[2].score | 0.6368278861045837 |
| keywords[2].display_name | Focus (optics) |
| keywords[3].id | https://openalex.org/keywords/point |
| keywords[3].score | 0.6292919516563416 |
| keywords[3].display_name | Point (geometry) |
| keywords[4].id | https://openalex.org/keywords/vc-dimension |
| keywords[4].score | 0.5924860835075378 |
| keywords[4].display_name | VC dimension |
| keywords[5].id | https://openalex.org/keywords/dimension |
| keywords[5].score | 0.5707855820655823 |
| keywords[5].display_name | Dimension (graph theory) |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.559937059879303 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/regular-polygon |
| keywords[7].score | 0.5077899098396301 |
| keywords[7].display_name | Regular polygon |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.4501573145389557 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.449449747800827 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/differential-privacy |
| keywords[10].score | 0.44047749042510986 |
| keywords[10].display_name | Differential privacy |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.17119133472442627 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/combinatorics |
| keywords[12].score | 0.09044107794761658 |
| keywords[12].display_name | Combinatorics |
| language | en |
| locations[0].id | mag:3213973860 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | arXiv (Cornell University) |
| locations[0].landing_page_url | https://arxiv.org/abs/2103.03279 |
| authorships[0].author.id | https://openalex.org/A5051488979 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Ayush Sekhari |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I205783295 |
| authorships[0].affiliations[0].raw_affiliation_string | Cornell University, Ithaca, United States |
| authorships[0].institutions[0].id | https://openalex.org/I205783295 |
| authorships[0].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Cornell University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ayush Sekhari |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Cornell University, Ithaca, United States |
| authorships[1].author.id | https://openalex.org/A5022867638 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2170-3015 |
| authorships[1].author.display_name | Jayadev Acharya |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I205783295 |
| authorships[1].affiliations[0].raw_affiliation_string | Cornell University, Ithaca, United States |
| authorships[1].institutions[0].id | https://openalex.org/I205783295 |
| authorships[1].institutions[0].ror | https://ror.org/05bnh6r87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I205783295 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Cornell University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jayadev Acharya |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Cornell University, Ithaca, United States |
| authorships[2].author.id | https://openalex.org/A5047778197 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0048-2559 |
| authorships[2].author.display_name | Gautam Kamath |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I63966007 |
| authorships[2].affiliations[0].raw_affiliation_string | Massachusetts Institute of Technology, Cambridge, United States |
| authorships[2].institutions[0].id | https://openalex.org/I63966007 |
| authorships[2].institutions[0].ror | https://ror.org/042nb2s44 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I63966007 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Massachusetts Institute of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gautam Kamath |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Massachusetts Institute of Technology, Cambridge, United States |
| authorships[3].author.id | https://openalex.org/A5103890688 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Ananda Theertha Suresh |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1291425158 |
| authorships[3].affiliations[0].raw_affiliation_string | Google (United States), Mountain View, United States |
| authorships[3].institutions[0].id | https://openalex.org/I1291425158 |
| authorships[3].institutions[0].ror | https://ror.org/00njsd438 |
| authorships[3].institutions[0].type | company |
| authorships[3].institutions[0].lineage | https://openalex.org/I1291425158, https://openalex.org/I4210128969 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Google (United States) |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Ananda Theertha Suresh |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Google (United States), Mountain View, United States |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/abs/2103.03279 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Remember What You Want to Forget: Algorithms for Machine Unlearning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-10-10T17:16:08.811792 |
| primary_topic.id | https://openalex.org/T10764 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Privacy-Preserving Technologies in Data |
| related_works | https://openalex.org/W3135378441, https://openalex.org/W2994029118, https://openalex.org/W3213758632, https://openalex.org/W3128806248, https://openalex.org/W3193974325, https://openalex.org/W3188298126, https://openalex.org/W3174636647, https://openalex.org/W3212763423, https://openalex.org/W3213826430, https://openalex.org/W3122943284, https://openalex.org/W2804837173, https://openalex.org/W3209138912, https://openalex.org/W2979626747, https://openalex.org/W2902567911, https://openalex.org/W2183338763, https://openalex.org/W3047362706, https://openalex.org/W2896897107, https://openalex.org/W3152621714, https://openalex.org/W3057055245 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | mag:3213973860 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | arXiv (Cornell University) |
| best_oa_location.landing_page_url | https://arxiv.org/abs/2103.03279 |
| primary_location.id | mag:3213973860 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | arXiv (Cornell University) |
| primary_location.landing_page_url | https://arxiv.org/abs/2103.03279 |
| publication_date | 2021-12-06 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 8, 15, 26, 75, 145 |
| abstract_inverted_index.$z | 49 |
| abstract_inverted_index.In | 127 |
| abstract_inverted_index.S$ | 51 |
| abstract_inverted_index.We | 0, 73 |
| abstract_inverted_index.an | 21, 111 |
| abstract_inverted_index.at | 40 |
| abstract_inverted_index.be | 55 |
| abstract_inverted_index.in | 43, 80, 129 |
| abstract_inverted_index.is | 86, 96, 123 |
| abstract_inverted_index.of | 4, 78, 106, 140 |
| abstract_inverted_index.on | 32, 90, 97 |
| abstract_inverted_index.to | 54, 61, 87, 118 |
| abstract_inverted_index.up | 117 |
| abstract_inverted_index.we | 109 |
| abstract_inverted_index.$S$ | 17 |
| abstract_inverted_index.$d$ | 122 |
| abstract_inverted_index.Our | 94 |
| abstract_inverted_index.The | 11 |
| abstract_inverted_index.\in | 50 |
| abstract_inverted_index.and | 24, 100, 151 |
| abstract_inverted_index.any | 46 |
| abstract_inverted_index.can | 52, 115 |
| abstract_inverted_index.its | 63 |
| abstract_inverted_index.the | 2, 36, 44, 59, 69, 84, 104, 124 |
| abstract_inverted_index.This | 143 |
| abstract_inverted_index.both | 98 |
| abstract_inverted_index.from | 7, 20, 35 |
| abstract_inverted_index.goal | 85 |
| abstract_inverted_index.only | 137 |
| abstract_inverted_index.same | 37, 70 |
| abstract_inverted_index.some | 41 |
| abstract_inverted_index.that | 29, 114 |
| abstract_inverted_index.thus | 57 |
| abstract_inverted_index.well | 31, 89 |
| abstract_inverted_index. For | 103 |
| abstract_inverted_index.drawn | 18 |
| abstract_inverted_index.first | 13 |
| abstract_inverted_index.focus | 95 |
| abstract_inverted_index.model | 27, 65 |
| abstract_inverted_index.novel | 146 |
| abstract_inverted_index.point | 42 |
| abstract_inverted_index.still | 67 |
| abstract_inverted_index.study | 1, 77 |
| abstract_inverted_index.where | 83, 121 |
| abstract_inverted_index.while | 66 |
| abstract_inverted_index.(which | 134 |
| abstract_inverted_index.convex | 107 |
| abstract_inverted_index.i.i.d. | 19 |
| abstract_inverted_index.learnt | 9 |
| abstract_inverted_index.model. | 10 |
| abstract_inverted_index.modify | 62 |
| abstract_inverted_index.output | 64 |
| abstract_inverted_index.unseen | 33, 92 |
| abstract_inverted_index.between | 148 |
| abstract_inverted_index.dataset | 16 |
| abstract_inverted_index.future, | 45 |
| abstract_inverted_index.implies | 135 |
| abstract_inverted_index.learner | 12, 60 |
| abstract_inverted_index.losses, | 108 |
| abstract_inverted_index.machine | 81, 152 |
| abstract_inverted_index.outputs | 25 |
| abstract_inverted_index.perform | 88 |
| abstract_inverted_index.privacy | 150 |
| abstract_inverted_index.private | 132 |
| abstract_inverted_index.problem | 3, 125 |
| abstract_inverted_index.provide | 110 |
| abstract_inverted_index.request | 53 |
| abstract_inverted_index.samples | 34 |
| abstract_inverted_index.setting | 105 |
| abstract_inverted_index.storage | 101 |
| abstract_inverted_index.unknown | 22 |
| abstract_inverted_index.unlearn | 116 |
| abstract_inverted_index.However, | 39 |
| abstract_inverted_index.accuracy | 71 |
| abstract_inverted_index.deletion | 139 |
| abstract_inverted_index.ensuring | 68 |
| abstract_inverted_index.general, | 130 |
| abstract_inverted_index.initiate | 74 |
| abstract_inverted_index.learning | 133 |
| abstract_inverted_index.performs | 30 |
| abstract_inverted_index.receives | 14 |
| abstract_inverted_index.rigorous | 76 |
| abstract_inverted_index.samples, | 120 |
| abstract_inverted_index.samples. | 142 |
| abstract_inverted_index.training | 47 |
| abstract_inverted_index.algorithm | 113 |
| abstract_inverted_index.datapoint | 48 |
| abstract_inverted_index.prompting | 58 |
| abstract_inverted_index.datapoints | 6 |
| abstract_inverted_index.dimension. | 126 |
| abstract_inverted_index.guarantees | 138 |
| abstract_inverted_index.previously | 91 |
| abstract_inverted_index.separation | 147 |
| abstract_inverted_index.unlearned, | 56 |
| abstract_inverted_index.unlearning | 5, 112 |
| abstract_inverted_index.comparison, | 128 |
| abstract_inverted_index.complexity. | 102 |
| abstract_inverted_index.datapoints. | 93 |
| abstract_inverted_index.guarantees. | 72 |
| abstract_inverted_index.unlearning) | 136 |
| abstract_inverted_index.unlearning, | 82 |
| abstract_inverted_index.unlearning. | 153 |
| abstract_inverted_index.demonstrates | 144 |
| abstract_inverted_index.differential | 149 |
| abstract_inverted_index.$\widehat{w}$ | 28 |
| abstract_inverted_index.computational | 99 |
| abstract_inverted_index.distribution, | 23 |
| abstract_inverted_index.distribution. | 38 |
| abstract_inverted_index.$O(n/d^{1/2})$ | 141 |
| abstract_inverted_index.$O(n/d^{1/4})$ | 119 |
| abstract_inverted_index.differentially | 131 |
| abstract_inverted_index.generalization | 79 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.17000428 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |