Remote exploration and monitoring of geothermal sources: A novel method for foliar element mapping using hyperspectral (VNIR-SWIR) remote sensing Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1016/j.geothermics.2023.102716
Hyperspectral remote sensing is an emerging technique to develop new cost- and time-effective geophysical mapping methods. To overcome challenges introduced by plant cover in geothermal systems globally, we hypothesise that foliage can be used as a proxy to map underlying surface geothermal activity and heat-flux due to their capability on elemental uptake from geothermal fluids and host rock/soil. This study shows for the first time that foliar elemental mapping can be used to image geothermal systems using both high-resolution airborne and satellite hyperspectral images. This study has specifically targeted kanuka shrub (kunzea ericoides var. microflora) as a proxy media to develop air- and spaceborne hyperspectral solutions to monitor inaccessible, biologically and culturally sensitive geothermal areas. Using high resolution airborne AisaFENIX and PRISMA hyperspectral data, foliar element maps for Ag, As, Ba and Sb have been developed using Kernel Partial Least Squares Regression and Random Forest classification models to track their foliar distribution and develop a conceptual model for metal and thermal induced changes in plants. Our study shows evidence that the created foliar element maps are in concordance with independent LiDAR-retrieved canopy structure and height as well as temperature effects of the underlying geothermal field. This study has proven air- and spaceborne hyperspectral sensors can indeed capture critical information within the VNIR and SWIR regions (e.g. ∼452, ∼500, ∼670, ∼820, ∼970, ∼1180, ∼1400 and ∼2000 nm) that can be used to identify metal and thermal-induced spectral changes in plants reliably (overall accuracy of 0.41–0.66) with remotely sensed imagery. Our non-invasive method using hyperspectral remote sensing can complement existing practices for exploration and management of renewable geothermal resources through timely monitoring from air- and spaceborne platforms.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1016/j.geothermics.2023.102716
- OA Status
- hybrid
- Cited By
- 11
- References
- 125
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4362528973
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4362528973Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1016/j.geothermics.2023.102716Digital Object Identifier
- Title
-
Remote exploration and monitoring of geothermal sources: A novel method for foliar element mapping using hyperspectral (VNIR-SWIR) remote sensingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-04-04Full publication date if available
- Authors
-
Cecilia Rodriguez-Gomez, Gábor Kereszturi, Paramsothy Jeyakumar, Reddy Pullanagari, Robert Reeves, Andrew Rae, Jonathan ProcterList of authors in order
- Landing page
-
https://doi.org/10.1016/j.geothermics.2023.102716Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1016/j.geothermics.2023.102716Direct OA link when available
- Concepts
-
VNIR, Hyperspectral imaging, Remote sensing, Geothermal gradient, Environmental science, Imaging spectrometer, Geology, Spectrometer, Geophysics, Quantum mechanics, PhysicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
11Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 4, 2024: 7Per-year citation counts (last 5 years)
- References (count)
-
125Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4362528973 |
|---|---|
| doi | https://doi.org/10.1016/j.geothermics.2023.102716 |
| ids.doi | https://doi.org/10.1016/j.geothermics.2023.102716 |
| ids.openalex | https://openalex.org/W4362528973 |
| fwci | 3.32759062 |
| type | article |
| title | Remote exploration and monitoring of geothermal sources: A novel method for foliar element mapping using hyperspectral (VNIR-SWIR) remote sensing |
| biblio.issue | |
| biblio.volume | 111 |
| biblio.last_page | 102716 |
| biblio.first_page | 102716 |
| topics[0].id | https://openalex.org/T10111 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Remote Sensing in Agriculture |
| topics[1].id | https://openalex.org/T10689 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9975000023841858 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Remote-Sensing Image Classification |
| topics[2].id | https://openalex.org/T12157 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9934999942779541 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Geochemistry and Geologic Mapping |
| is_xpac | False |
| apc_list.value | 2760 |
| apc_list.currency | USD |
| apc_list.value_usd | 2760 |
| apc_paid.value | 2760 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 2760 |
| concepts[0].id | https://openalex.org/C5457282 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9027966856956482 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7907352 |
| concepts[0].display_name | VNIR |
| concepts[1].id | https://openalex.org/C159078339 |
| concepts[1].level | 2 |
| concepts[1].score | 0.8977625370025635 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q959005 |
| concepts[1].display_name | Hyperspectral imaging |
| concepts[2].id | https://openalex.org/C62649853 |
| concepts[2].level | 1 |
| concepts[2].score | 0.8009814023971558 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[2].display_name | Remote sensing |
| concepts[3].id | https://openalex.org/C111766609 |
| concepts[3].level | 2 |
| concepts[3].score | 0.693605899810791 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q636340 |
| concepts[3].display_name | Geothermal gradient |
| concepts[4].id | https://openalex.org/C39432304 |
| concepts[4].level | 0 |
| concepts[4].score | 0.5873928666114807 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[4].display_name | Environmental science |
| concepts[5].id | https://openalex.org/C183852935 |
| concepts[5].level | 3 |
| concepts[5].score | 0.49008333683013916 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q6002848 |
| concepts[5].display_name | Imaging spectrometer |
| concepts[6].id | https://openalex.org/C127313418 |
| concepts[6].level | 0 |
| concepts[6].score | 0.3011241555213928 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[6].display_name | Geology |
| concepts[7].id | https://openalex.org/C33390570 |
| concepts[7].level | 2 |
| concepts[7].score | 0.1437997817993164 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q188463 |
| concepts[7].display_name | Spectrometer |
| concepts[8].id | https://openalex.org/C8058405 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1213589608669281 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q46255 |
| concepts[8].display_name | Geophysics |
| concepts[9].id | https://openalex.org/C62520636 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[9].display_name | Quantum mechanics |
| concepts[10].id | https://openalex.org/C121332964 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[10].display_name | Physics |
| keywords[0].id | https://openalex.org/keywords/vnir |
| keywords[0].score | 0.9027966856956482 |
| keywords[0].display_name | VNIR |
| keywords[1].id | https://openalex.org/keywords/hyperspectral-imaging |
| keywords[1].score | 0.8977625370025635 |
| keywords[1].display_name | Hyperspectral imaging |
| keywords[2].id | https://openalex.org/keywords/remote-sensing |
| keywords[2].score | 0.8009814023971558 |
| keywords[2].display_name | Remote sensing |
| keywords[3].id | https://openalex.org/keywords/geothermal-gradient |
| keywords[3].score | 0.693605899810791 |
| keywords[3].display_name | Geothermal gradient |
| keywords[4].id | https://openalex.org/keywords/environmental-science |
| keywords[4].score | 0.5873928666114807 |
| keywords[4].display_name | Environmental science |
| keywords[5].id | https://openalex.org/keywords/imaging-spectrometer |
| keywords[5].score | 0.49008333683013916 |
| keywords[5].display_name | Imaging spectrometer |
| keywords[6].id | https://openalex.org/keywords/geology |
| keywords[6].score | 0.3011241555213928 |
| keywords[6].display_name | Geology |
| keywords[7].id | https://openalex.org/keywords/spectrometer |
| keywords[7].score | 0.1437997817993164 |
| keywords[7].display_name | Spectrometer |
| keywords[8].id | https://openalex.org/keywords/geophysics |
| keywords[8].score | 0.1213589608669281 |
| keywords[8].display_name | Geophysics |
| language | en |
| locations[0].id | doi:10.1016/j.geothermics.2023.102716 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S68581467 |
| locations[0].source.issn | 0375-6505, 1879-3576 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0375-6505 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Geothermics |
| locations[0].source.host_organization | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_name | Elsevier BV |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320990 |
| locations[0].source.host_organization_lineage_names | Elsevier BV |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Geothermics |
| locations[0].landing_page_url | https://doi.org/10.1016/j.geothermics.2023.102716 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5020441130 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0211-1201 |
| authorships[0].author.display_name | Cecilia Rodriguez-Gomez |
| authorships[0].countries | NZ |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I51158804 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Agriculture and Environment, Massey University, Palmerston North, New Zealand |
| authorships[0].institutions[0].id | https://openalex.org/I51158804 |
| authorships[0].institutions[0].ror | https://ror.org/052czxv31 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I51158804 |
| authorships[0].institutions[0].country_code | NZ |
| authorships[0].institutions[0].display_name | Massey University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Cecilia Rodriguez-Gomez |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | School of Agriculture and Environment, Massey University, Palmerston North, New Zealand |
| authorships[1].author.id | https://openalex.org/A5080107096 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4336-2012 |
| authorships[1].author.display_name | Gábor Kereszturi |
| authorships[1].countries | NZ |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I51158804 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Agriculture and Environment, Massey University, Palmerston North, New Zealand |
| authorships[1].institutions[0].id | https://openalex.org/I51158804 |
| authorships[1].institutions[0].ror | https://ror.org/052czxv31 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I51158804 |
| authorships[1].institutions[0].country_code | NZ |
| authorships[1].institutions[0].display_name | Massey University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gabor Kereszturi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Agriculture and Environment, Massey University, Palmerston North, New Zealand |
| authorships[2].author.id | https://openalex.org/A5003625622 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9841-8645 |
| authorships[2].author.display_name | Paramsothy Jeyakumar |
| authorships[2].countries | NZ |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I51158804 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Agriculture and Environment, Massey University, Palmerston North, New Zealand |
| authorships[2].institutions[0].id | https://openalex.org/I51158804 |
| authorships[2].institutions[0].ror | https://ror.org/052czxv31 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I51158804 |
| authorships[2].institutions[0].country_code | NZ |
| authorships[2].institutions[0].display_name | Massey University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Paramsothy Jeyakumar |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Agriculture and Environment, Massey University, Palmerston North, New Zealand |
| authorships[3].author.id | https://openalex.org/A5016705517 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6560-986X |
| authorships[3].author.display_name | Reddy Pullanagari |
| authorships[3].countries | NZ |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I51158804 |
| authorships[3].affiliations[0].raw_affiliation_string | MAF digital Lab, School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand |
| authorships[3].institutions[0].id | https://openalex.org/I51158804 |
| authorships[3].institutions[0].ror | https://ror.org/052czxv31 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I51158804 |
| authorships[3].institutions[0].country_code | NZ |
| authorships[3].institutions[0].display_name | Massey University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Reddy Pullanagari |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | MAF digital Lab, School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand |
| authorships[4].author.id | https://openalex.org/A5012059537 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-7936-4242 |
| authorships[4].author.display_name | Robert Reeves |
| authorships[4].countries | NZ |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I11886867 |
| authorships[4].affiliations[0].raw_affiliation_string | GNS Science, Wairakei Research Centre, Taupo, New Zealand |
| authorships[4].institutions[0].id | https://openalex.org/I11886867 |
| authorships[4].institutions[0].ror | https://ror.org/03vaqfv64 |
| authorships[4].institutions[0].type | facility |
| authorships[4].institutions[0].lineage | https://openalex.org/I11886867, https://openalex.org/I4414411271 |
| authorships[4].institutions[0].country_code | NZ |
| authorships[4].institutions[0].display_name | GNS Science |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Robert Reeves |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | GNS Science, Wairakei Research Centre, Taupo, New Zealand |
| authorships[5].author.id | https://openalex.org/A5101411036 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Andrew Rae |
| authorships[5].countries | NZ |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I11886867 |
| authorships[5].affiliations[0].raw_affiliation_string | GNS Science, Wairakei Research Centre, Taupo, New Zealand |
| authorships[5].institutions[0].id | https://openalex.org/I11886867 |
| authorships[5].institutions[0].ror | https://ror.org/03vaqfv64 |
| authorships[5].institutions[0].type | facility |
| authorships[5].institutions[0].lineage | https://openalex.org/I11886867, https://openalex.org/I4414411271 |
| authorships[5].institutions[0].country_code | NZ |
| authorships[5].institutions[0].display_name | GNS Science |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Andrew Rae |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | GNS Science, Wairakei Research Centre, Taupo, New Zealand |
| authorships[6].author.id | https://openalex.org/A5110724406 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8271-1137 |
| authorships[6].author.display_name | Jonathan Procter |
| authorships[6].countries | NZ |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I51158804 |
| authorships[6].affiliations[0].raw_affiliation_string | School of Agriculture and Environment, Massey University, Palmerston North, New Zealand |
| authorships[6].institutions[0].id | https://openalex.org/I51158804 |
| authorships[6].institutions[0].ror | https://ror.org/052czxv31 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I51158804 |
| authorships[6].institutions[0].country_code | NZ |
| authorships[6].institutions[0].display_name | Massey University |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Jonathan N. Procter |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | School of Agriculture and Environment, Massey University, Palmerston North, New Zealand |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1016/j.geothermics.2023.102716 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Remote exploration and monitoring of geothermal sources: A novel method for foliar element mapping using hyperspectral (VNIR-SWIR) remote sensing |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10111 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Remote Sensing in Agriculture |
| related_works | https://openalex.org/W2809209827, https://openalex.org/W4387802641, https://openalex.org/W2027460042, https://openalex.org/W2746742660, https://openalex.org/W2045337428, https://openalex.org/W2385371209, https://openalex.org/W2044082451, https://openalex.org/W1849857383, https://openalex.org/W4250051149, https://openalex.org/W2083270190 |
| cited_by_count | 11 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 4 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1016/j.geothermics.2023.102716 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S68581467 |
| best_oa_location.source.issn | 0375-6505, 1879-3576 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0375-6505 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Geothermics |
| best_oa_location.source.host_organization | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_name | Elsevier BV |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| best_oa_location.source.host_organization_lineage_names | Elsevier BV |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Geothermics |
| best_oa_location.landing_page_url | https://doi.org/10.1016/j.geothermics.2023.102716 |
| primary_location.id | doi:10.1016/j.geothermics.2023.102716 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S68581467 |
| primary_location.source.issn | 0375-6505, 1879-3576 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0375-6505 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Geothermics |
| primary_location.source.host_organization | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_name | Elsevier BV |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320990 |
| primary_location.source.host_organization_lineage_names | Elsevier BV |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Geothermics |
| primary_location.landing_page_url | https://doi.org/10.1016/j.geothermics.2023.102716 |
| publication_date | 2023-04-04 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3186917005, https://openalex.org/W6807713804, https://openalex.org/W2012395145, https://openalex.org/W2261059368, https://openalex.org/W6829846596, https://openalex.org/W6790620926, https://openalex.org/W6610081437, https://openalex.org/W1964339679, https://openalex.org/W2022891651, https://openalex.org/W2013085890, https://openalex.org/W1981793753, https://openalex.org/W1483589200, https://openalex.org/W6802154809, https://openalex.org/W3164997792, https://openalex.org/W2771249668, https://openalex.org/W1966675249, https://openalex.org/W2969523923, https://openalex.org/W2046404820, https://openalex.org/W2059217921, https://openalex.org/W2128854437, https://openalex.org/W2907047183, https://openalex.org/W6724217941, https://openalex.org/W4205890776, https://openalex.org/W6766367951, https://openalex.org/W2515255934, https://openalex.org/W2037292625, https://openalex.org/W2035072156, https://openalex.org/W2603834682, https://openalex.org/W6663476391, https://openalex.org/W2058077001, https://openalex.org/W2059879332, https://openalex.org/W2768251502, https://openalex.org/W2084442795, https://openalex.org/W1985857513, https://openalex.org/W1992524555, https://openalex.org/W2041668458, https://openalex.org/W2046171791, https://openalex.org/W2602458379, https://openalex.org/W2927402061, https://openalex.org/W2086951591, https://openalex.org/W6632995342, https://openalex.org/W6729430960, https://openalex.org/W1970652488, https://openalex.org/W990113952, https://openalex.org/W2016338468, https://openalex.org/W6673497790, https://openalex.org/W6787255405, https://openalex.org/W2795475231, https://openalex.org/W2011825930, https://openalex.org/W2087972079, https://openalex.org/W2097748275, https://openalex.org/W2050509402, https://openalex.org/W2207209165, https://openalex.org/W1983065564, https://openalex.org/W2105981176, https://openalex.org/W2024925679, https://openalex.org/W2168421439, https://openalex.org/W2095510253, https://openalex.org/W1977942186, https://openalex.org/W2019294657, https://openalex.org/W6696183356, https://openalex.org/W6621312655, https://openalex.org/W3006993985, https://openalex.org/W2313541398, https://openalex.org/W6756209573, https://openalex.org/W6963577031, https://openalex.org/W3003381133, https://openalex.org/W2167801938, https://openalex.org/W6798409566, https://openalex.org/W6623034183, https://openalex.org/W2158100493, https://openalex.org/W2314579706, https://openalex.org/W6613905751, https://openalex.org/W1989181903, https://openalex.org/W2109606373, https://openalex.org/W2080239438, https://openalex.org/W1922211106, https://openalex.org/W2551367216, https://openalex.org/W2025069570, https://openalex.org/W1183389655, https://openalex.org/W2036003376, https://openalex.org/W3132558263, https://openalex.org/W1993479585, https://openalex.org/W2623963597, https://openalex.org/W2017146545, https://openalex.org/W2511814745, https://openalex.org/W6798020232, https://openalex.org/W2073508032, https://openalex.org/W2149043005, https://openalex.org/W1994378716, https://openalex.org/W3093101980, https://openalex.org/W1754365911, https://openalex.org/W2104067319, https://openalex.org/W2086545976, https://openalex.org/W2780625821, https://openalex.org/W2034010900, https://openalex.org/W3150635270, https://openalex.org/W2159106716, https://openalex.org/W2078838424, https://openalex.org/W2060265637, https://openalex.org/W2109862952, https://openalex.org/W2073503722, https://openalex.org/W2081967262, https://openalex.org/W1993608482, https://openalex.org/W6806489643, https://openalex.org/W6803091287, https://openalex.org/W2290057197, https://openalex.org/W3182257885, https://openalex.org/W3205772352, https://openalex.org/W649124747, https://openalex.org/W271503710, https://openalex.org/W4206047302, https://openalex.org/W397135709, https://openalex.org/W3203144507, https://openalex.org/W2897475517, https://openalex.org/W4253622782, https://openalex.org/W3113284690, https://openalex.org/W4251279846, https://openalex.org/W3015877343, https://openalex.org/W2963548456, https://openalex.org/W3183844666, https://openalex.org/W807996015, https://openalex.org/W4211124783, https://openalex.org/W1549552139, https://openalex.org/W2052331316 |
| referenced_works_count | 125 |
| abstract_inverted_index.a | 35, 96, 154 |
| abstract_inverted_index.Ba | 130 |
| abstract_inverted_index.Sb | 132 |
| abstract_inverted_index.To | 16 |
| abstract_inverted_index.an | 4 |
| abstract_inverted_index.as | 34, 95, 185, 187 |
| abstract_inverted_index.be | 32, 70, 228 |
| abstract_inverted_index.by | 20 |
| abstract_inverted_index.in | 23, 163, 176, 237 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 190, 242, 263 |
| abstract_inverted_index.on | 49 |
| abstract_inverted_index.to | 7, 37, 46, 72, 99, 106, 147, 230 |
| abstract_inverted_index.we | 27 |
| abstract_inverted_index.Ag, | 128 |
| abstract_inverted_index.As, | 129 |
| abstract_inverted_index.Our | 165, 248 |
| abstract_inverted_index.and | 11, 43, 55, 80, 102, 110, 120, 131, 142, 152, 159, 183, 200, 212, 223, 233, 261, 272 |
| abstract_inverted_index.are | 175 |
| abstract_inverted_index.can | 31, 69, 204, 227, 255 |
| abstract_inverted_index.due | 45 |
| abstract_inverted_index.for | 61, 127, 157, 259 |
| abstract_inverted_index.has | 86, 197 |
| abstract_inverted_index.map | 38 |
| abstract_inverted_index.new | 9 |
| abstract_inverted_index.nm) | 225 |
| abstract_inverted_index.the | 62, 170, 191, 210 |
| abstract_inverted_index.SWIR | 213 |
| abstract_inverted_index.This | 58, 84, 195 |
| abstract_inverted_index.VNIR | 211 |
| abstract_inverted_index.air- | 101, 199, 271 |
| abstract_inverted_index.been | 134 |
| abstract_inverted_index.both | 77 |
| abstract_inverted_index.from | 52, 270 |
| abstract_inverted_index.have | 133 |
| abstract_inverted_index.high | 116 |
| abstract_inverted_index.host | 56 |
| abstract_inverted_index.maps | 126, 174 |
| abstract_inverted_index.that | 29, 65, 169, 226 |
| abstract_inverted_index.time | 64 |
| abstract_inverted_index.used | 33, 71, 229 |
| abstract_inverted_index.var. | 93 |
| abstract_inverted_index.well | 186 |
| abstract_inverted_index.with | 178, 244 |
| abstract_inverted_index.(e.g. | 215 |
| abstract_inverted_index.Least | 139 |
| abstract_inverted_index.Using | 115 |
| abstract_inverted_index.cost- | 10 |
| abstract_inverted_index.cover | 22 |
| abstract_inverted_index.data, | 123 |
| abstract_inverted_index.first | 63 |
| abstract_inverted_index.image | 73 |
| abstract_inverted_index.media | 98 |
| abstract_inverted_index.metal | 158, 232 |
| abstract_inverted_index.model | 156 |
| abstract_inverted_index.plant | 21 |
| abstract_inverted_index.proxy | 36, 97 |
| abstract_inverted_index.shows | 60, 167 |
| abstract_inverted_index.shrub | 90 |
| abstract_inverted_index.study | 59, 85, 166, 196 |
| abstract_inverted_index.their | 47, 149 |
| abstract_inverted_index.track | 148 |
| abstract_inverted_index.using | 76, 136, 251 |
| abstract_inverted_index.Forest | 144 |
| abstract_inverted_index.Kernel | 137 |
| abstract_inverted_index.PRISMA | 121 |
| abstract_inverted_index.Random | 143 |
| abstract_inverted_index.areas. | 114 |
| abstract_inverted_index.canopy | 181 |
| abstract_inverted_index.field. | 194 |
| abstract_inverted_index.fluids | 54 |
| abstract_inverted_index.foliar | 66, 124, 150, 172 |
| abstract_inverted_index.height | 184 |
| abstract_inverted_index.indeed | 205 |
| abstract_inverted_index.kanuka | 89 |
| abstract_inverted_index.method | 250 |
| abstract_inverted_index.models | 146 |
| abstract_inverted_index.plants | 238 |
| abstract_inverted_index.proven | 198 |
| abstract_inverted_index.remote | 1, 253 |
| abstract_inverted_index.sensed | 246 |
| abstract_inverted_index.timely | 268 |
| abstract_inverted_index.uptake | 51 |
| abstract_inverted_index.within | 209 |
| abstract_inverted_index.(kunzea | 91 |
| abstract_inverted_index.Partial | 138 |
| abstract_inverted_index.Squares | 140 |
| abstract_inverted_index.capture | 206 |
| abstract_inverted_index.changes | 162, 236 |
| abstract_inverted_index.created | 171 |
| abstract_inverted_index.develop | 8, 100, 153 |
| abstract_inverted_index.effects | 189 |
| abstract_inverted_index.element | 125, 173 |
| abstract_inverted_index.foliage | 30 |
| abstract_inverted_index.images. | 83 |
| abstract_inverted_index.induced | 161 |
| abstract_inverted_index.mapping | 14, 68 |
| abstract_inverted_index.monitor | 107 |
| abstract_inverted_index.plants. | 164 |
| abstract_inverted_index.regions | 214 |
| abstract_inverted_index.sensing | 2, 254 |
| abstract_inverted_index.sensors | 203 |
| abstract_inverted_index.surface | 40 |
| abstract_inverted_index.systems | 25, 75 |
| abstract_inverted_index.thermal | 160 |
| abstract_inverted_index.through | 267 |
| abstract_inverted_index.∼1400 | 222 |
| abstract_inverted_index.∼2000 | 224 |
| abstract_inverted_index.∼452, | 216 |
| abstract_inverted_index.∼500, | 217 |
| abstract_inverted_index.∼670, | 218 |
| abstract_inverted_index.∼820, | 219 |
| abstract_inverted_index.∼970, | 220 |
| abstract_inverted_index.(overall | 240 |
| abstract_inverted_index.accuracy | 241 |
| abstract_inverted_index.activity | 42 |
| abstract_inverted_index.airborne | 79, 118 |
| abstract_inverted_index.critical | 207 |
| abstract_inverted_index.emerging | 5 |
| abstract_inverted_index.evidence | 168 |
| abstract_inverted_index.existing | 257 |
| abstract_inverted_index.identify | 231 |
| abstract_inverted_index.imagery. | 247 |
| abstract_inverted_index.methods. | 15 |
| abstract_inverted_index.overcome | 17 |
| abstract_inverted_index.reliably | 239 |
| abstract_inverted_index.remotely | 245 |
| abstract_inverted_index.spectral | 235 |
| abstract_inverted_index.targeted | 88 |
| abstract_inverted_index.∼1180, | 221 |
| abstract_inverted_index.AisaFENIX | 119 |
| abstract_inverted_index.developed | 135 |
| abstract_inverted_index.elemental | 50, 67 |
| abstract_inverted_index.ericoides | 92 |
| abstract_inverted_index.globally, | 26 |
| abstract_inverted_index.heat-flux | 44 |
| abstract_inverted_index.practices | 258 |
| abstract_inverted_index.renewable | 264 |
| abstract_inverted_index.resources | 266 |
| abstract_inverted_index.satellite | 81 |
| abstract_inverted_index.sensitive | 112 |
| abstract_inverted_index.solutions | 105 |
| abstract_inverted_index.structure | 182 |
| abstract_inverted_index.technique | 6 |
| abstract_inverted_index.Regression | 141 |
| abstract_inverted_index.capability | 48 |
| abstract_inverted_index.challenges | 18 |
| abstract_inverted_index.complement | 256 |
| abstract_inverted_index.conceptual | 155 |
| abstract_inverted_index.culturally | 111 |
| abstract_inverted_index.geothermal | 24, 41, 53, 74, 113, 193, 265 |
| abstract_inverted_index.introduced | 19 |
| abstract_inverted_index.management | 262 |
| abstract_inverted_index.monitoring | 269 |
| abstract_inverted_index.platforms. | 274 |
| abstract_inverted_index.resolution | 117 |
| abstract_inverted_index.rock/soil. | 57 |
| abstract_inverted_index.spaceborne | 103, 201, 273 |
| abstract_inverted_index.underlying | 39, 192 |
| abstract_inverted_index.concordance | 177 |
| abstract_inverted_index.exploration | 260 |
| abstract_inverted_index.geophysical | 13 |
| abstract_inverted_index.hypothesise | 28 |
| abstract_inverted_index.independent | 179 |
| abstract_inverted_index.information | 208 |
| abstract_inverted_index.microflora) | 94 |
| abstract_inverted_index.temperature | 188 |
| abstract_inverted_index.0.41–0.66) | 243 |
| abstract_inverted_index.biologically | 109 |
| abstract_inverted_index.distribution | 151 |
| abstract_inverted_index.non-invasive | 249 |
| abstract_inverted_index.specifically | 87 |
| abstract_inverted_index.Hyperspectral | 0 |
| abstract_inverted_index.hyperspectral | 82, 104, 122, 202, 252 |
| abstract_inverted_index.inaccessible, | 108 |
| abstract_inverted_index.classification | 145 |
| abstract_inverted_index.time-effective | 12 |
| abstract_inverted_index.LiDAR-retrieved | 180 |
| abstract_inverted_index.high-resolution | 78 |
| abstract_inverted_index.thermal-induced | 234 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 97 |
| corresponding_author_ids | https://openalex.org/A5020441130 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I51158804 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.4099999964237213 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.91146116 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |