Remote Sensing of Ecosystem Water Use Efficiency: A Review of Direct and Indirect Estimation Methods Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.3390/rs13122393
Water use efficiency (WUE) is a key index for understanding the ecosystem of carbon–water coupling. The undistinguishable carbon–water coupling mechanism and uncertainties of indirect methods by remote sensing products and process models render challenges for WUE remote sensing. In this paper, current progress in direct and indirect methods of WUE estimation by remote sensing is reviewed. Indirect methods based on gross primary production (GPP)/evapotranspiration (ET) from ground observation, processed models and remote sensing are the main ways to estimate WUE in which carbon and water cycles are independent processes. Various empirical models based on meteorological variables and remote sensed vegetation indices to estimate WUE proved the ability of remotely sensed data for WUE estimating. The analytical model provides a mechanistic opportunity for WUE estimation on an ecosystem scale, while the hypothesis has yet to be validated and applied for the shorter time scales. An optimized response of canopy conductance to atmospheric vapor pressure deficit (VPD) in an analytical model inverted from the conductance model has been also challenged. Partitioning transpiration (T) and evaporation (E) is a more complex phenomenon than that stated in the analytic model and needs a more precise remote sensing retrieval algorithm as well as ground validation, which is an opportunity for remote sensing to extrapolate WUE estimation from sites to a regional scale. Although studies on controlling the mechanism of environmental factors have provided an opportunity to improve WUE remote sensing, the mismatch in the spatial and temporal resolution of meteorological products and remote sensing data, as well as the uncertainty of meteorological reanalysis data, add further challenges. Therefore, improving the remote sensing-based methods of GPP and ET, developing high-quality meteorological forcing datasets and building mechanistic remote sensing models directly acting on carbon–water cycle coupling are possible ways to improve WUE remote sensing. Improvement in direct WUE remote sensing methods or remote sensing-driven ecosystem analysis methods can promote a better understanding of the global ecosystem carbon–water coupling mechanisms and vegetation functions–climate feedbacks to serve for the future global carbon neutrality.
Related Topics
- Type
- review
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs13122393
- https://www.mdpi.com/2072-4292/13/12/2393/pdf?version=1624259588
- OA Status
- gold
- Cited By
- 47
- References
- 137
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3176175328
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3176175328Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs13122393Digital Object Identifier
- Title
-
Remote Sensing of Ecosystem Water Use Efficiency: A Review of Direct and Indirect Estimation MethodsWork title
- Type
-
reviewOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-06-18Full publication date if available
- Authors
-
Wanyuan Cai, Sana Ullah, Lei Yan, Yi LinList of authors in order
- Landing page
-
https://doi.org/10.3390/rs13122393Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/13/12/2393/pdf?version=1624259588Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/13/12/2393/pdf?version=1624259588Direct OA link when available
- Concepts
-
Evapotranspiration, Environmental science, Canopy conductance, Water-use efficiency, Transpiration, Remote sensing, Water cycle, Vapour Pressure Deficit, Ecology, Irrigation, Geography, Biology, Photosynthesis, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
47Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 15, 2024: 11, 2023: 9, 2022: 11, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
137Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3176175328 |
|---|---|
| doi | https://doi.org/10.3390/rs13122393 |
| ids.doi | https://doi.org/10.3390/rs13122393 |
| ids.mag | 3176175328 |
| ids.openalex | https://openalex.org/W3176175328 |
| fwci | 3.81005396 |
| type | review |
| title | Remote Sensing of Ecosystem Water Use Efficiency: A Review of Direct and Indirect Estimation Methods |
| awards[0].id | https://openalex.org/G7644494242 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 31870531 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 12 |
| biblio.volume | 13 |
| biblio.last_page | 2393 |
| biblio.first_page | 2393 |
| topics[0].id | https://openalex.org/T10266 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2306 |
| topics[0].subfield.display_name | Global and Planetary Change |
| topics[0].display_name | Plant Water Relations and Carbon Dynamics |
| topics[1].id | https://openalex.org/T10330 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9986000061035156 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2312 |
| topics[1].subfield.display_name | Water Science and Technology |
| topics[1].display_name | Hydrology and Watershed Management Studies |
| topics[2].id | https://openalex.org/T10111 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.996399998664856 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2303 |
| topics[2].subfield.display_name | Ecology |
| topics[2].display_name | Remote Sensing in Agriculture |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C176783924 |
| concepts[0].level | 2 |
| concepts[0].score | 0.749742329120636 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q828158 |
| concepts[0].display_name | Evapotranspiration |
| concepts[1].id | https://openalex.org/C39432304 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7185276746749878 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[1].display_name | Environmental science |
| concepts[2].id | https://openalex.org/C2780169741 |
| concepts[2].level | 5 |
| concepts[2].score | 0.567517876625061 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17048309 |
| concepts[2].display_name | Canopy conductance |
| concepts[3].id | https://openalex.org/C2776325102 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5515364408493042 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2551340 |
| concepts[3].display_name | Water-use efficiency |
| concepts[4].id | https://openalex.org/C157517311 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5132181644439697 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q167980 |
| concepts[4].display_name | Transpiration |
| concepts[5].id | https://openalex.org/C62649853 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5066004991531372 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[5].display_name | Remote sensing |
| concepts[6].id | https://openalex.org/C133830359 |
| concepts[6].level | 2 |
| concepts[6].score | 0.41043803095817566 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q81041 |
| concepts[6].display_name | Water cycle |
| concepts[7].id | https://openalex.org/C14331020 |
| concepts[7].level | 4 |
| concepts[7].score | 0.2759552001953125 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q907795 |
| concepts[7].display_name | Vapour Pressure Deficit |
| concepts[8].id | https://openalex.org/C18903297 |
| concepts[8].level | 1 |
| concepts[8].score | 0.10350272059440613 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[8].display_name | Ecology |
| concepts[9].id | https://openalex.org/C88862950 |
| concepts[9].level | 2 |
| concepts[9].score | 0.08425137400627136 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11453 |
| concepts[9].display_name | Irrigation |
| concepts[10].id | https://openalex.org/C205649164 |
| concepts[10].level | 0 |
| concepts[10].score | 0.07072189450263977 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[10].display_name | Geography |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C183688256 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11982 |
| concepts[12].display_name | Photosynthesis |
| concepts[13].id | https://openalex.org/C59822182 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[13].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/evapotranspiration |
| keywords[0].score | 0.749742329120636 |
| keywords[0].display_name | Evapotranspiration |
| keywords[1].id | https://openalex.org/keywords/environmental-science |
| keywords[1].score | 0.7185276746749878 |
| keywords[1].display_name | Environmental science |
| keywords[2].id | https://openalex.org/keywords/canopy-conductance |
| keywords[2].score | 0.567517876625061 |
| keywords[2].display_name | Canopy conductance |
| keywords[3].id | https://openalex.org/keywords/water-use-efficiency |
| keywords[3].score | 0.5515364408493042 |
| keywords[3].display_name | Water-use efficiency |
| keywords[4].id | https://openalex.org/keywords/transpiration |
| keywords[4].score | 0.5132181644439697 |
| keywords[4].display_name | Transpiration |
| keywords[5].id | https://openalex.org/keywords/remote-sensing |
| keywords[5].score | 0.5066004991531372 |
| keywords[5].display_name | Remote sensing |
| keywords[6].id | https://openalex.org/keywords/water-cycle |
| keywords[6].score | 0.41043803095817566 |
| keywords[6].display_name | Water cycle |
| keywords[7].id | https://openalex.org/keywords/vapour-pressure-deficit |
| keywords[7].score | 0.2759552001953125 |
| keywords[7].display_name | Vapour Pressure Deficit |
| keywords[8].id | https://openalex.org/keywords/ecology |
| keywords[8].score | 0.10350272059440613 |
| keywords[8].display_name | Ecology |
| keywords[9].id | https://openalex.org/keywords/irrigation |
| keywords[9].score | 0.08425137400627136 |
| keywords[9].display_name | Irrigation |
| keywords[10].id | https://openalex.org/keywords/geography |
| keywords[10].score | 0.07072189450263977 |
| keywords[10].display_name | Geography |
| language | en |
| locations[0].id | doi:10.3390/rs13122393 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/13/12/2393/pdf?version=1624259588 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs13122393 |
| locations[1].id | pmh:oai:doaj.org/article:6122d730fa944cd1a429b3898b9f45bd |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 13, Iss 12, p 2393 (2021) |
| locations[1].landing_page_url | https://doaj.org/article/6122d730fa944cd1a429b3898b9f45bd |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/13/12/2393/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 13; Issue 12; Pages: 2393 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs13122393 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5035813603 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7007-8239 |
| authorships[0].author.display_name | Wanyuan Cai |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[0].affiliations[0].raw_affiliation_string | Beijing Key Lab of Spatial Information Integration and 3S Application, Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China |
| authorships[0].institutions[0].id | https://openalex.org/I20231570 |
| authorships[0].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Peking University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wanyuan Cai |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Beijing Key Lab of Spatial Information Integration and 3S Application, Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China |
| authorships[1].author.id | https://openalex.org/A5101689079 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4379-1426 |
| authorships[1].author.display_name | Sana Ullah |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[1].affiliations[0].raw_affiliation_string | Beijing Key Lab of Spatial Information Integration and 3S Application, Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China |
| authorships[1].institutions[0].id | https://openalex.org/I20231570 |
| authorships[1].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Peking University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sana Ullah |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Beijing Key Lab of Spatial Information Integration and 3S Application, Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China |
| authorships[2].author.id | https://openalex.org/A5045473603 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0965-4636 |
| authorships[2].author.display_name | Lei Yan |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[2].affiliations[0].raw_affiliation_string | Beijing Key Lab of Spatial Information Integration and 3S Application, Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China |
| authorships[2].institutions[0].id | https://openalex.org/I20231570 |
| authorships[2].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Peking University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lei Yan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Beijing Key Lab of Spatial Information Integration and 3S Application, Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China |
| authorships[3].author.id | https://openalex.org/A5100762397 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3396-3327 |
| authorships[3].author.display_name | Yi Lin |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I20231570 |
| authorships[3].affiliations[0].raw_affiliation_string | Beijing Key Lab of Spatial Information Integration and 3S Application, Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China |
| authorships[3].institutions[0].id | https://openalex.org/I20231570 |
| authorships[3].institutions[0].ror | https://ror.org/02v51f717 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I20231570 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Peking University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Yi Lin |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Beijing Key Lab of Spatial Information Integration and 3S Application, Institute of Remote Sensing and Geographic Information System, School of Earth and Space Sciences, Peking University, Beijing 100871, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/13/12/2393/pdf?version=1624259588 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Remote Sensing of Ecosystem Water Use Efficiency: A Review of Direct and Indirect Estimation Methods |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10266 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2306 |
| primary_topic.subfield.display_name | Global and Planetary Change |
| primary_topic.display_name | Plant Water Relations and Carbon Dynamics |
| related_works | https://openalex.org/W2062370993, https://openalex.org/W4210242842, https://openalex.org/W2949611747, https://openalex.org/W3145149147, https://openalex.org/W2352340891, https://openalex.org/W247857502, https://openalex.org/W2586359268, https://openalex.org/W2416531044, https://openalex.org/W2150070925, https://openalex.org/W2361605249 |
| cited_by_count | 47 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 15 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 11 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 9 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 11 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs13122393 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/13/12/2393/pdf?version=1624259588 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs13122393 |
| primary_location.id | doi:10.3390/rs13122393 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/13/12/2393/pdf?version=1624259588 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs13122393 |
| publication_date | 2021-06-18 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2765761020, https://openalex.org/W2237184599, https://openalex.org/W2524692442, https://openalex.org/W2157402903, https://openalex.org/W3048970811, https://openalex.org/W2104521651, https://openalex.org/W6678081089, https://openalex.org/W2735193384, https://openalex.org/W1990097996, https://openalex.org/W2010687487, https://openalex.org/W2006838860, https://openalex.org/W2010340211, https://openalex.org/W2088458607, https://openalex.org/W2110647827, https://openalex.org/W2166460295, https://openalex.org/W1615509193, https://openalex.org/W1564467605, https://openalex.org/W2052648234, https://openalex.org/W2170278271, https://openalex.org/W1798781352, https://openalex.org/W6676077585, https://openalex.org/W2109039109, https://openalex.org/W2056642856, https://openalex.org/W1571708397, https://openalex.org/W2272039332, https://openalex.org/W2789306016, https://openalex.org/W2141357103, https://openalex.org/W2054657672, https://openalex.org/W2122512121, https://openalex.org/W2123095840, https://openalex.org/W2131372757, https://openalex.org/W1979723077, https://openalex.org/W4237088322, https://openalex.org/W2057040031, https://openalex.org/W1899964430, https://openalex.org/W2115977576, https://openalex.org/W1985275493, https://openalex.org/W2147654971, https://openalex.org/W2097896815, https://openalex.org/W2123855284, https://openalex.org/W2154700052, https://openalex.org/W2167891208, https://openalex.org/W2158897782, https://openalex.org/W1981122766, https://openalex.org/W2164574849, https://openalex.org/W1967559713, https://openalex.org/W2079282790, https://openalex.org/W6646227637, https://openalex.org/W6774088521, https://openalex.org/W2129592075, https://openalex.org/W2130235153, https://openalex.org/W1975768883, https://openalex.org/W2098020412, https://openalex.org/W2129859781, https://openalex.org/W2332370930, https://openalex.org/W2172396214, https://openalex.org/W2032530979, https://openalex.org/W2085250887, https://openalex.org/W1980065012, https://openalex.org/W6756510422, https://openalex.org/W4230883142, https://openalex.org/W1620168086, https://openalex.org/W2121627811, https://openalex.org/W2147880584, https://openalex.org/W2132131699, https://openalex.org/W1894250892, https://openalex.org/W2171928264, https://openalex.org/W2279234921, https://openalex.org/W2099395432, https://openalex.org/W2084368666, https://openalex.org/W1544267778, https://openalex.org/W2142704078, https://openalex.org/W2069782133, https://openalex.org/W1989955320, https://openalex.org/W2300118290, https://openalex.org/W2072490792, https://openalex.org/W2762155383, https://openalex.org/W7019573256, https://openalex.org/W2793815698, https://openalex.org/W2126571464, https://openalex.org/W3084080729, https://openalex.org/W3135193047, https://openalex.org/W3093841813, https://openalex.org/W2913205542, https://openalex.org/W3138686862, https://openalex.org/W3011202251, https://openalex.org/W2159802217, https://openalex.org/W2080692123, https://openalex.org/W2047608969, https://openalex.org/W6608307831, https://openalex.org/W2886699728, https://openalex.org/W2079643106, https://openalex.org/W2233675373, https://openalex.org/W2222009108, https://openalex.org/W2308036081, https://openalex.org/W2626845409, https://openalex.org/W1975070229, https://openalex.org/W6652111361, https://openalex.org/W2620881997, https://openalex.org/W1209269186, https://openalex.org/W2922004833, https://openalex.org/W1801676395, https://openalex.org/W2080225150, https://openalex.org/W2098450420, https://openalex.org/W2051610466, https://openalex.org/W2103160998, https://openalex.org/W2074720379, https://openalex.org/W3120523171, https://openalex.org/W1894730448, https://openalex.org/W2010293298, https://openalex.org/W2016044589, https://openalex.org/W2487385493, https://openalex.org/W3128473606, https://openalex.org/W1850645042, https://openalex.org/W2990408647, https://openalex.org/W2956553579, https://openalex.org/W2041570083, https://openalex.org/W2110832913, https://openalex.org/W2592541999, https://openalex.org/W3134595249, https://openalex.org/W2883209916, https://openalex.org/W2473524233, https://openalex.org/W2079454091, https://openalex.org/W2063907334, https://openalex.org/W2261059368, https://openalex.org/W2042345532, https://openalex.org/W2293055932, https://openalex.org/W2901665524, https://openalex.org/W2006486492, https://openalex.org/W204556970, https://openalex.org/W2107609990, https://openalex.org/W2895318950, https://openalex.org/W2121679532, https://openalex.org/W1984790449, https://openalex.org/W3004836315, https://openalex.org/W2902015343, https://openalex.org/W2106086341 |
| referenced_works_count | 137 |
| abstract_inverted_index.a | 5, 118, 175, 188, 214, 312 |
| abstract_inverted_index.An | 143 |
| abstract_inverted_index.In | 38 |
| abstract_inverted_index.an | 125, 156, 202, 228 |
| abstract_inverted_index.as | 195, 197, 250, 252 |
| abstract_inverted_index.be | 134 |
| abstract_inverted_index.by | 25, 51 |
| abstract_inverted_index.in | 43, 80, 155, 182, 237, 298 |
| abstract_inverted_index.is | 4, 54, 174, 201 |
| abstract_inverted_index.of | 12, 22, 48, 107, 146, 223, 243, 255, 268, 315 |
| abstract_inverted_index.on | 59, 93, 124, 219, 285 |
| abstract_inverted_index.or | 304 |
| abstract_inverted_index.to | 77, 101, 133, 149, 207, 213, 230, 292, 326 |
| abstract_inverted_index.(E) | 173 |
| abstract_inverted_index.(T) | 170 |
| abstract_inverted_index.ET, | 271 |
| abstract_inverted_index.GPP | 269 |
| abstract_inverted_index.The | 15, 114 |
| abstract_inverted_index.WUE | 35, 49, 79, 103, 112, 122, 209, 232, 294, 300 |
| abstract_inverted_index.add | 259 |
| abstract_inverted_index.and | 20, 29, 45, 70, 83, 96, 136, 171, 186, 240, 246, 270, 277, 322 |
| abstract_inverted_index.are | 73, 86, 289 |
| abstract_inverted_index.can | 310 |
| abstract_inverted_index.for | 8, 34, 111, 121, 138, 204, 328 |
| abstract_inverted_index.has | 131, 164 |
| abstract_inverted_index.key | 6 |
| abstract_inverted_index.the | 10, 74, 105, 129, 139, 161, 183, 221, 235, 238, 253, 264, 316, 329 |
| abstract_inverted_index.use | 1 |
| abstract_inverted_index.yet | 132 |
| abstract_inverted_index.(ET) | 64 |
| abstract_inverted_index.also | 166 |
| abstract_inverted_index.been | 165 |
| abstract_inverted_index.data | 110 |
| abstract_inverted_index.from | 65, 160, 211 |
| abstract_inverted_index.have | 226 |
| abstract_inverted_index.main | 75 |
| abstract_inverted_index.more | 176, 189 |
| abstract_inverted_index.than | 179 |
| abstract_inverted_index.that | 180 |
| abstract_inverted_index.this | 39 |
| abstract_inverted_index.time | 141 |
| abstract_inverted_index.ways | 76, 291 |
| abstract_inverted_index.well | 196, 251 |
| abstract_inverted_index.(VPD) | 154 |
| abstract_inverted_index.(WUE) | 3 |
| abstract_inverted_index.Water | 0 |
| abstract_inverted_index.based | 58, 92 |
| abstract_inverted_index.cycle | 287 |
| abstract_inverted_index.data, | 249, 258 |
| abstract_inverted_index.gross | 60 |
| abstract_inverted_index.index | 7 |
| abstract_inverted_index.model | 116, 158, 163, 185 |
| abstract_inverted_index.needs | 187 |
| abstract_inverted_index.serve | 327 |
| abstract_inverted_index.sites | 212 |
| abstract_inverted_index.vapor | 151 |
| abstract_inverted_index.water | 84 |
| abstract_inverted_index.which | 81, 200 |
| abstract_inverted_index.while | 128 |
| abstract_inverted_index.acting | 284 |
| abstract_inverted_index.better | 313 |
| abstract_inverted_index.canopy | 147 |
| abstract_inverted_index.carbon | 82, 332 |
| abstract_inverted_index.cycles | 85 |
| abstract_inverted_index.direct | 44, 299 |
| abstract_inverted_index.future | 330 |
| abstract_inverted_index.global | 317, 331 |
| abstract_inverted_index.ground | 66, 198 |
| abstract_inverted_index.models | 31, 69, 91, 282 |
| abstract_inverted_index.paper, | 40 |
| abstract_inverted_index.proved | 104 |
| abstract_inverted_index.remote | 26, 36, 52, 71, 97, 191, 205, 233, 247, 265, 280, 295, 301, 305 |
| abstract_inverted_index.render | 32 |
| abstract_inverted_index.scale, | 127 |
| abstract_inverted_index.scale. | 216 |
| abstract_inverted_index.sensed | 98, 109 |
| abstract_inverted_index.stated | 181 |
| abstract_inverted_index.Various | 89 |
| abstract_inverted_index.ability | 106 |
| abstract_inverted_index.applied | 137 |
| abstract_inverted_index.complex | 177 |
| abstract_inverted_index.current | 41 |
| abstract_inverted_index.deficit | 153 |
| abstract_inverted_index.factors | 225 |
| abstract_inverted_index.forcing | 275 |
| abstract_inverted_index.further | 260 |
| abstract_inverted_index.improve | 231, 293 |
| abstract_inverted_index.indices | 100 |
| abstract_inverted_index.methods | 24, 47, 57, 267, 303, 309 |
| abstract_inverted_index.precise | 190 |
| abstract_inverted_index.primary | 61 |
| abstract_inverted_index.process | 30 |
| abstract_inverted_index.promote | 311 |
| abstract_inverted_index.scales. | 142 |
| abstract_inverted_index.sensing | 27, 53, 72, 192, 206, 248, 281, 302 |
| abstract_inverted_index.shorter | 140 |
| abstract_inverted_index.spatial | 239 |
| abstract_inverted_index.studies | 218 |
| abstract_inverted_index.Although | 217 |
| abstract_inverted_index.Indirect | 56 |
| abstract_inverted_index.analysis | 308 |
| abstract_inverted_index.analytic | 184 |
| abstract_inverted_index.building | 278 |
| abstract_inverted_index.coupling | 18, 288, 320 |
| abstract_inverted_index.datasets | 276 |
| abstract_inverted_index.directly | 283 |
| abstract_inverted_index.estimate | 78, 102 |
| abstract_inverted_index.indirect | 23, 46 |
| abstract_inverted_index.inverted | 159 |
| abstract_inverted_index.mismatch | 236 |
| abstract_inverted_index.possible | 290 |
| abstract_inverted_index.pressure | 152 |
| abstract_inverted_index.products | 28, 245 |
| abstract_inverted_index.progress | 42 |
| abstract_inverted_index.provided | 227 |
| abstract_inverted_index.provides | 117 |
| abstract_inverted_index.regional | 215 |
| abstract_inverted_index.remotely | 108 |
| abstract_inverted_index.response | 145 |
| abstract_inverted_index.sensing, | 234 |
| abstract_inverted_index.sensing. | 37, 296 |
| abstract_inverted_index.temporal | 241 |
| abstract_inverted_index.algorithm | 194 |
| abstract_inverted_index.coupling. | 14 |
| abstract_inverted_index.ecosystem | 11, 126, 307, 318 |
| abstract_inverted_index.empirical | 90 |
| abstract_inverted_index.feedbacks | 325 |
| abstract_inverted_index.improving | 263 |
| abstract_inverted_index.mechanism | 19, 222 |
| abstract_inverted_index.optimized | 144 |
| abstract_inverted_index.processed | 68 |
| abstract_inverted_index.retrieval | 193 |
| abstract_inverted_index.reviewed. | 55 |
| abstract_inverted_index.validated | 135 |
| abstract_inverted_index.variables | 95 |
| abstract_inverted_index.Therefore, | 262 |
| abstract_inverted_index.analytical | 115, 157 |
| abstract_inverted_index.challenges | 33 |
| abstract_inverted_index.developing | 272 |
| abstract_inverted_index.efficiency | 2 |
| abstract_inverted_index.estimation | 50, 123, 210 |
| abstract_inverted_index.hypothesis | 130 |
| abstract_inverted_index.mechanisms | 321 |
| abstract_inverted_index.phenomenon | 178 |
| abstract_inverted_index.processes. | 88 |
| abstract_inverted_index.production | 62 |
| abstract_inverted_index.reanalysis | 257 |
| abstract_inverted_index.resolution | 242 |
| abstract_inverted_index.vegetation | 99, 323 |
| abstract_inverted_index.Improvement | 297 |
| abstract_inverted_index.atmospheric | 150 |
| abstract_inverted_index.challenged. | 167 |
| abstract_inverted_index.challenges. | 261 |
| abstract_inverted_index.conductance | 148, 162 |
| abstract_inverted_index.controlling | 220 |
| abstract_inverted_index.estimating. | 113 |
| abstract_inverted_index.evaporation | 172 |
| abstract_inverted_index.extrapolate | 208 |
| abstract_inverted_index.independent | 87 |
| abstract_inverted_index.mechanistic | 119, 279 |
| abstract_inverted_index.neutrality. | 333 |
| abstract_inverted_index.opportunity | 120, 203, 229 |
| abstract_inverted_index.uncertainty | 254 |
| abstract_inverted_index.validation, | 199 |
| abstract_inverted_index.Partitioning | 168 |
| abstract_inverted_index.high-quality | 273 |
| abstract_inverted_index.observation, | 67 |
| abstract_inverted_index.environmental | 224 |
| abstract_inverted_index.sensing-based | 266 |
| abstract_inverted_index.transpiration | 169 |
| abstract_inverted_index.uncertainties | 21 |
| abstract_inverted_index.understanding | 9, 314 |
| abstract_inverted_index.carbon–water | 13, 17, 286, 319 |
| abstract_inverted_index.meteorological | 94, 244, 256, 274 |
| abstract_inverted_index.sensing-driven | 306 |
| abstract_inverted_index.undistinguishable | 16 |
| abstract_inverted_index.functions–climate | 324 |
| abstract_inverted_index.(GPP)/evapotranspiration | 63 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5100762397 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I20231570 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/6 |
| sustainable_development_goals[0].score | 0.6100000143051147 |
| sustainable_development_goals[0].display_name | Clean water and sanitation |
| citation_normalized_percentile.value | 0.93010937 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |