Removing Batch Normalization Boosts Adversarial Training Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2207.01156
Adversarial training (AT) defends deep neural networks against adversarial attacks. One challenge that limits its practical application is the performance degradation on clean samples. A major bottleneck identified by previous works is the widely used batch normalization (BN), which struggles to model the different statistics of clean and adversarial training samples in AT. Although the dominant approach is to extend BN to capture this mixture of distribution, we propose to completely eliminate this bottleneck by removing all BN layers in AT. Our normalizer-free robust training (NoFrost) method extends recent advances in normalizer-free networks to AT for its unexplored advantage on handling the mixture distribution challenge. We show that NoFrost achieves adversarial robustness with only a minor sacrifice on clean sample accuracy. On ImageNet with ResNet50, NoFrost achieves $74.06\%$ clean accuracy, which drops merely $2.00\%$ from standard training. In contrast, BN-based AT obtains $59.28\%$ clean accuracy, suffering a significant $16.78\%$ drop from standard training. In addition, NoFrost achieves a $23.56\%$ adversarial robustness against PGD attack, which improves the $13.57\%$ robustness in BN-based AT. We observe better model smoothness and larger decision margins from NoFrost, which make the models less sensitive to input perturbations and thus more robust. Moreover, when incorporating more data augmentations into NoFrost, it achieves comprehensive robustness against multiple distribution shifts. Code and pre-trained models are public at https://github.com/amazon-research/normalizer-free-robust-training.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2207.01156
- https://arxiv.org/pdf/2207.01156
- OA Status
- green
- Cited By
- 6
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4283831268
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4283831268Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2207.01156Digital Object Identifier
- Title
-
Removing Batch Normalization Boosts Adversarial TrainingWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-04Full publication date if available
- Authors
-
Haotao Wang, Aston Zhang, Shuai Zheng, Xingjian Shi, Mu Li, Zhangyang WangList of authors in order
- Landing page
-
https://arxiv.org/abs/2207.01156Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2207.01156Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2207.01156Direct OA link when available
- Concepts
-
Bottleneck, Adversarial system, Computer science, Robustness (evolution), Normalization (sociology), Deep neural networks, Artificial intelligence, Initialization, Machine learning, Artificial neural network, Programming language, Gene, Anthropology, Chemistry, Biochemistry, Sociology, Embedded systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2023: 3Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4283831268 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2207.01156 |
| ids.doi | https://doi.org/10.48550/arxiv.2207.01156 |
| ids.openalex | https://openalex.org/W4283831268 |
| fwci | |
| type | preprint |
| title | Removing Batch Normalization Boosts Adversarial Training |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9991000294685364 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9696000218391418 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| topics[2].id | https://openalex.org/T10036 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.95660001039505 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Advanced Neural Network Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2780513914 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8005002737045288 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q18210350 |
| concepts[0].display_name | Bottleneck |
| concepts[1].id | https://openalex.org/C37736160 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7315806150436401 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[1].display_name | Adversarial system |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6880720853805542 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C63479239 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6763291358947754 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[3].display_name | Robustness (evolution) |
| concepts[4].id | https://openalex.org/C136886441 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6595582962036133 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q926129 |
| concepts[4].display_name | Normalization (sociology) |
| concepts[5].id | https://openalex.org/C2984842247 |
| concepts[5].level | 3 |
| concepts[5].score | 0.5619917511940002 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep neural networks |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5315974354743958 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C114466953 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45758381485939026 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6034165 |
| concepts[7].display_name | Initialization |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4401014745235443 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.40962594747543335 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C199360897 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[10].display_name | Programming language |
| concepts[11].id | https://openalex.org/C104317684 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[11].display_name | Gene |
| concepts[12].id | https://openalex.org/C19165224 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[12].display_name | Anthropology |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C55493867 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[14].display_name | Biochemistry |
| concepts[15].id | https://openalex.org/C144024400 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[15].display_name | Sociology |
| concepts[16].id | https://openalex.org/C149635348 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[16].display_name | Embedded system |
| keywords[0].id | https://openalex.org/keywords/bottleneck |
| keywords[0].score | 0.8005002737045288 |
| keywords[0].display_name | Bottleneck |
| keywords[1].id | https://openalex.org/keywords/adversarial-system |
| keywords[1].score | 0.7315806150436401 |
| keywords[1].display_name | Adversarial system |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6880720853805542 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/robustness |
| keywords[3].score | 0.6763291358947754 |
| keywords[3].display_name | Robustness (evolution) |
| keywords[4].id | https://openalex.org/keywords/normalization |
| keywords[4].score | 0.6595582962036133 |
| keywords[4].display_name | Normalization (sociology) |
| keywords[5].id | https://openalex.org/keywords/deep-neural-networks |
| keywords[5].score | 0.5619917511940002 |
| keywords[5].display_name | Deep neural networks |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.5315974354743958 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/initialization |
| keywords[7].score | 0.45758381485939026 |
| keywords[7].display_name | Initialization |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.4401014745235443 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.40962594747543335 |
| keywords[9].display_name | Artificial neural network |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2207.01156 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2207.01156 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2207.01156 |
| locations[1].id | doi:10.48550/arxiv.2207.01156 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2207.01156 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5058253075 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0626-2058 |
| authorships[0].author.display_name | Haotao Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Haotao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5049841140 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Aston Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Aston |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100726973 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1636-631X |
| authorships[2].author.display_name | Shuai Zheng |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zheng, Shuai |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5091515481 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2700-7742 |
| authorships[3].author.display_name | Xingjian Shi |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shi, Xingjian |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100399466 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7327-3304 |
| authorships[4].author.display_name | Mu Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Li, Mu |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5048522863 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-2050-5693 |
| authorships[5].author.display_name | Zhangyang Wang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Wang, Zhangyang |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2207.01156 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Removing Batch Normalization Boosts Adversarial Training |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9991000294685364 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W4226466875, https://openalex.org/W2977257638, https://openalex.org/W4288095186, https://openalex.org/W3210541621, https://openalex.org/W2950183588, https://openalex.org/W3080754722, https://openalex.org/W4383221314, https://openalex.org/W3093978547, https://openalex.org/W2953536436, https://openalex.org/W3203790781 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2207.01156 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2207.01156 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2207.01156 |
| primary_location.id | pmh:oai:arXiv.org:2207.01156 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2207.01156 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2207.01156 |
| publication_date | 2022-07-04 |
| publication_year | 2022 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 24 |
| abstract_inverted_index.a | 114, 146, 157 |
| abstract_inverted_index.AT | 94, 140 |
| abstract_inverted_index.BN | 60, 77 |
| abstract_inverted_index.In | 137, 153 |
| abstract_inverted_index.On | 121 |
| abstract_inverted_index.We | 105, 172 |
| abstract_inverted_index.at | 218 |
| abstract_inverted_index.by | 28, 74 |
| abstract_inverted_index.in | 51, 79, 90, 169 |
| abstract_inverted_index.is | 17, 31, 57 |
| abstract_inverted_index.it | 204 |
| abstract_inverted_index.of | 45, 65 |
| abstract_inverted_index.on | 21, 99, 117 |
| abstract_inverted_index.to | 40, 58, 61, 69, 93, 189 |
| abstract_inverted_index.we | 67 |
| abstract_inverted_index.AT. | 52, 80, 171 |
| abstract_inverted_index.One | 10 |
| abstract_inverted_index.Our | 81 |
| abstract_inverted_index.PGD | 162 |
| abstract_inverted_index.all | 76 |
| abstract_inverted_index.and | 47, 177, 192, 213 |
| abstract_inverted_index.are | 216 |
| abstract_inverted_index.for | 95 |
| abstract_inverted_index.its | 14, 96 |
| abstract_inverted_index.the | 18, 32, 42, 54, 101, 166, 185 |
| abstract_inverted_index.(AT) | 2 |
| abstract_inverted_index.Code | 212 |
| abstract_inverted_index.data | 200 |
| abstract_inverted_index.deep | 4 |
| abstract_inverted_index.drop | 149 |
| abstract_inverted_index.from | 134, 150, 181 |
| abstract_inverted_index.into | 202 |
| abstract_inverted_index.less | 187 |
| abstract_inverted_index.make | 184 |
| abstract_inverted_index.more | 194, 199 |
| abstract_inverted_index.only | 113 |
| abstract_inverted_index.show | 106 |
| abstract_inverted_index.that | 12, 107 |
| abstract_inverted_index.this | 63, 72 |
| abstract_inverted_index.thus | 193 |
| abstract_inverted_index.used | 34 |
| abstract_inverted_index.when | 197 |
| abstract_inverted_index.with | 112, 123 |
| abstract_inverted_index.(BN), | 37 |
| abstract_inverted_index.batch | 35 |
| abstract_inverted_index.clean | 22, 46, 118, 128, 143 |
| abstract_inverted_index.drops | 131 |
| abstract_inverted_index.input | 190 |
| abstract_inverted_index.major | 25 |
| abstract_inverted_index.minor | 115 |
| abstract_inverted_index.model | 41, 175 |
| abstract_inverted_index.which | 38, 130, 164, 183 |
| abstract_inverted_index.works | 30 |
| abstract_inverted_index.better | 174 |
| abstract_inverted_index.extend | 59 |
| abstract_inverted_index.larger | 178 |
| abstract_inverted_index.layers | 78 |
| abstract_inverted_index.limits | 13 |
| abstract_inverted_index.merely | 132 |
| abstract_inverted_index.method | 86 |
| abstract_inverted_index.models | 186, 215 |
| abstract_inverted_index.neural | 5 |
| abstract_inverted_index.public | 217 |
| abstract_inverted_index.recent | 88 |
| abstract_inverted_index.robust | 83 |
| abstract_inverted_index.sample | 119 |
| abstract_inverted_index.widely | 33 |
| abstract_inverted_index.NoFrost | 108, 125, 155 |
| abstract_inverted_index.against | 7, 161, 208 |
| abstract_inverted_index.attack, | 163 |
| abstract_inverted_index.capture | 62 |
| abstract_inverted_index.defends | 3 |
| abstract_inverted_index.extends | 87 |
| abstract_inverted_index.margins | 180 |
| abstract_inverted_index.mixture | 64, 102 |
| abstract_inverted_index.observe | 173 |
| abstract_inverted_index.obtains | 141 |
| abstract_inverted_index.propose | 68 |
| abstract_inverted_index.robust. | 195 |
| abstract_inverted_index.samples | 50 |
| abstract_inverted_index.shifts. | 211 |
| abstract_inverted_index.$2.00\%$ | 133 |
| abstract_inverted_index.Although | 53 |
| abstract_inverted_index.BN-based | 139, 170 |
| abstract_inverted_index.ImageNet | 122 |
| abstract_inverted_index.NoFrost, | 182, 203 |
| abstract_inverted_index.achieves | 109, 126, 156, 205 |
| abstract_inverted_index.advances | 89 |
| abstract_inverted_index.approach | 56 |
| abstract_inverted_index.attacks. | 9 |
| abstract_inverted_index.decision | 179 |
| abstract_inverted_index.dominant | 55 |
| abstract_inverted_index.handling | 100 |
| abstract_inverted_index.improves | 165 |
| abstract_inverted_index.multiple | 209 |
| abstract_inverted_index.networks | 6, 92 |
| abstract_inverted_index.previous | 29 |
| abstract_inverted_index.removing | 75 |
| abstract_inverted_index.samples. | 23 |
| abstract_inverted_index.standard | 135, 151 |
| abstract_inverted_index.training | 1, 49, 84 |
| abstract_inverted_index.$13.57\%$ | 167 |
| abstract_inverted_index.$16.78\%$ | 148 |
| abstract_inverted_index.$23.56\%$ | 158 |
| abstract_inverted_index.$59.28\%$ | 142 |
| abstract_inverted_index.$74.06\%$ | 127 |
| abstract_inverted_index.(NoFrost) | 85 |
| abstract_inverted_index.Moreover, | 196 |
| abstract_inverted_index.ResNet50, | 124 |
| abstract_inverted_index.accuracy, | 129, 144 |
| abstract_inverted_index.accuracy. | 120 |
| abstract_inverted_index.addition, | 154 |
| abstract_inverted_index.advantage | 98 |
| abstract_inverted_index.challenge | 11 |
| abstract_inverted_index.contrast, | 138 |
| abstract_inverted_index.different | 43 |
| abstract_inverted_index.eliminate | 71 |
| abstract_inverted_index.practical | 15 |
| abstract_inverted_index.sacrifice | 116 |
| abstract_inverted_index.sensitive | 188 |
| abstract_inverted_index.struggles | 39 |
| abstract_inverted_index.suffering | 145 |
| abstract_inverted_index.training. | 136, 152 |
| abstract_inverted_index.bottleneck | 26, 73 |
| abstract_inverted_index.challenge. | 104 |
| abstract_inverted_index.completely | 70 |
| abstract_inverted_index.identified | 27 |
| abstract_inverted_index.robustness | 111, 160, 168, 207 |
| abstract_inverted_index.smoothness | 176 |
| abstract_inverted_index.statistics | 44 |
| abstract_inverted_index.unexplored | 97 |
| abstract_inverted_index.Adversarial | 0 |
| abstract_inverted_index.adversarial | 8, 48, 110, 159 |
| abstract_inverted_index.application | 16 |
| abstract_inverted_index.degradation | 20 |
| abstract_inverted_index.performance | 19 |
| abstract_inverted_index.pre-trained | 214 |
| abstract_inverted_index.significant | 147 |
| abstract_inverted_index.distribution | 103, 210 |
| abstract_inverted_index.augmentations | 201 |
| abstract_inverted_index.comprehensive | 206 |
| abstract_inverted_index.distribution, | 66 |
| abstract_inverted_index.incorporating | 198 |
| abstract_inverted_index.normalization | 36 |
| abstract_inverted_index.perturbations | 191 |
| abstract_inverted_index.normalizer-free | 82, 91 |
| abstract_inverted_index.https://github.com/amazon-research/normalizer-free-robust-training. | 219 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |