Renal tumor segmentation, visualization, and segmentation confidence using ensembles of neural networks in patients undergoing surgical resection Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1007/s00330-024-11026-6
Objectives To develop an automatic segmentation model for solid renal tumors on contrast-enhanced CTs and to visualize segmentation with associated confidence to promote clinical applicability. Materials and methods The training dataset included solid renal tumor patients from two tertiary centers undergoing surgical resection and receiving CT in the corticomedullary or nephrogenic contrast media (CM) phase. Manual tumor segmentation was performed on all axial CT slices serving as reference standard for automatic segmentations. Independent testing was performed on the publicly available KiTS 2019 dataset. Ensembles of neural networks (ENN, DeepLabV3) were used for automatic renal tumor segmentation, and their performance was quantified with DICE score. ENN average foreground entropy measured segmentation confidence (binary: successful segmentation with DICE score > 0.8 versus inadequate segmentation ≤ 0.8). Results N = 639/ n = 210 patients were included in the training and independent test dataset. Datasets were comparable regarding age and sex ( p > 0.05), while renal tumors in the training dataset were larger and more frequently benign ( p < 0.01). In the internal test dataset, the ENN model yielded a median DICE score = 0.84 (IQR: 0.62–0.97, corticomedullary) and 0.86 (IQR: 0.77–0.96, nephrogenic CM phase), and the segmentation confidence an AUC = 0.89 (sensitivity = 0.86; specificity = 0.77). In the independent test dataset, the ENN model achieved a median DICE score = 0.84 (IQR: 0.71–0.97, corticomedullary CM phase); and segmentation confidence an accuracy = 0.84 (sensitivity = 0.86 and specificity = 0.81). ENN segmentations were visualized with color-coded voxelwise tumor probabilities and thresholds superimposed on clinical CT images. Conclusions ENN-based renal tumor segmentation robustly performs in external test data and might aid in renal tumor classification and treatment planning. Clinical relevance statement Ensembles of neural networks (ENN) models could automatically segment renal tumors on routine CTs, enabling and standardizing downstream image analyses and treatment planning. Providing confidence measures and segmentation overlays on images can lower the threshold for clinical ENN implementation. Key Points Ensembles of neural networks (ENN) segmentation is visualized by color-coded voxelwise tumor probabilities and thresholds . ENN provided a high segmentation accuracy in internal testing and in an independent external test dataset . ENN models provide measures of segmentation confidence which can robustly discriminate between successful and inadequate segmentations .
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s00330-024-11026-6
- OA Status
- hybrid
- Cited By
- 6
- References
- 17
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401798874
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401798874Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s00330-024-11026-6Digital Object Identifier
- Title
-
Renal tumor segmentation, visualization, and segmentation confidence using ensembles of neural networks in patients undergoing surgical resectionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-08-23Full publication date if available
- Authors
-
Sophie Bachanek, Paul Wuerzberg, Lorenz Biggemann, Tanja Yani Janssen, Manuel Nietert, Joachim Lotz, Philip Zeuschner, Alexander Maßmann, Annemarie Uhlig, Johannes UhligList of authors in order
- Landing page
-
https://doi.org/10.1007/s00330-024-11026-6Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1007/s00330-024-11026-6Direct OA link when available
- Concepts
-
Segmentation, Medicine, Confidence interval, Radiology, Neuroradiology, Artificial intelligence, Internal medicine, Computer science, Neurology, PsychiatryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 6Per-year citation counts (last 5 years)
- References (count)
-
17Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401798874 |
|---|---|
| doi | https://doi.org/10.1007/s00330-024-11026-6 |
| ids.doi | https://doi.org/10.1007/s00330-024-11026-6 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/39177855 |
| ids.openalex | https://openalex.org/W4401798874 |
| fwci | 5.17573885 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D006801 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Humans |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D005260 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Female |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D016571 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Neural Networks, Computer |
| mesh[3].qualifier_ui | Q000000981 |
| mesh[3].descriptor_ui | D007680 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | diagnostic imaging |
| mesh[3].descriptor_name | Kidney Neoplasms |
| mesh[4].qualifier_ui | Q000601 |
| mesh[4].descriptor_ui | D007680 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | surgery |
| mesh[4].descriptor_name | Kidney Neoplasms |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D008297 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Male |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D008875 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Middle Aged |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D003287 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Contrast Media |
| mesh[8].qualifier_ui | Q000379 |
| mesh[8].descriptor_ui | D014057 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | methods |
| mesh[8].descriptor_name | Tomography, X-Ray Computed |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000368 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Aged |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D011857 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Radiographic Image Interpretation, Computer-Assisted |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000328 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Adult |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | Q000000981 |
| mesh[13].descriptor_ui | D007680 |
| mesh[13].is_major_topic | True |
| mesh[13].qualifier_name | diagnostic imaging |
| mesh[13].descriptor_name | Kidney Neoplasms |
| mesh[14].qualifier_ui | Q000601 |
| mesh[14].descriptor_ui | D007680 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | surgery |
| mesh[14].descriptor_name | Kidney Neoplasms |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D005260 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Female |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D008297 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Male |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D016571 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Neural Networks, Computer |
| mesh[18].qualifier_ui | Q000379 |
| mesh[18].descriptor_ui | D014057 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | methods |
| mesh[18].descriptor_name | Tomography, X-Ray Computed |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D008875 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Middle Aged |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D003287 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Contrast Media |
| mesh[21].qualifier_ui | |
| mesh[21].descriptor_ui | D000368 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | |
| mesh[21].descriptor_name | Aged |
| mesh[22].qualifier_ui | Q000379 |
| mesh[22].descriptor_ui | D011857 |
| mesh[22].is_major_topic | True |
| mesh[22].qualifier_name | methods |
| mesh[22].descriptor_name | Radiographic Image Interpretation, Computer-Assisted |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D000328 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Adult |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D012189 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Retrospective Studies |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D006801 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Humans |
| mesh[26].qualifier_ui | |
| mesh[26].descriptor_ui | D005260 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | |
| mesh[26].descriptor_name | Female |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D016571 |
| mesh[27].is_major_topic | True |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Neural Networks, Computer |
| mesh[28].qualifier_ui | Q000000981 |
| mesh[28].descriptor_ui | D007680 |
| mesh[28].is_major_topic | True |
| mesh[28].qualifier_name | diagnostic imaging |
| mesh[28].descriptor_name | Kidney Neoplasms |
| mesh[29].qualifier_ui | Q000601 |
| mesh[29].descriptor_ui | D007680 |
| mesh[29].is_major_topic | True |
| mesh[29].qualifier_name | surgery |
| mesh[29].descriptor_name | Kidney Neoplasms |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D008297 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Male |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D008875 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Middle Aged |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D003287 |
| mesh[32].is_major_topic | True |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Contrast Media |
| mesh[33].qualifier_ui | Q000379 |
| mesh[33].descriptor_ui | D014057 |
| mesh[33].is_major_topic | True |
| mesh[33].qualifier_name | methods |
| mesh[33].descriptor_name | Tomography, X-Ray Computed |
| mesh[34].qualifier_ui | |
| mesh[34].descriptor_ui | D000368 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | |
| mesh[34].descriptor_name | Aged |
| mesh[35].qualifier_ui | Q000379 |
| mesh[35].descriptor_ui | D011857 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | methods |
| mesh[35].descriptor_name | Radiographic Image Interpretation, Computer-Assisted |
| mesh[36].qualifier_ui | |
| mesh[36].descriptor_ui | D000328 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | |
| mesh[36].descriptor_name | Adult |
| mesh[37].qualifier_ui | |
| mesh[37].descriptor_ui | D006801 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | |
| mesh[37].descriptor_name | Humans |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D005260 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Female |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D016571 |
| mesh[39].is_major_topic | True |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Neural Networks, Computer |
| mesh[40].qualifier_ui | Q000000981 |
| mesh[40].descriptor_ui | D007680 |
| mesh[40].is_major_topic | True |
| mesh[40].qualifier_name | diagnostic imaging |
| mesh[40].descriptor_name | Kidney Neoplasms |
| mesh[41].qualifier_ui | Q000601 |
| mesh[41].descriptor_ui | D007680 |
| mesh[41].is_major_topic | True |
| mesh[41].qualifier_name | surgery |
| mesh[41].descriptor_name | Kidney Neoplasms |
| mesh[42].qualifier_ui | |
| mesh[42].descriptor_ui | D008297 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | |
| mesh[42].descriptor_name | Male |
| mesh[43].qualifier_ui | |
| mesh[43].descriptor_ui | D008875 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | |
| mesh[43].descriptor_name | Middle Aged |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D003287 |
| mesh[44].is_major_topic | True |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Contrast Media |
| mesh[45].qualifier_ui | Q000379 |
| mesh[45].descriptor_ui | D014057 |
| mesh[45].is_major_topic | True |
| mesh[45].qualifier_name | methods |
| mesh[45].descriptor_name | Tomography, X-Ray Computed |
| mesh[46].qualifier_ui | |
| mesh[46].descriptor_ui | D000368 |
| mesh[46].is_major_topic | False |
| mesh[46].qualifier_name | |
| mesh[46].descriptor_name | Aged |
| mesh[47].qualifier_ui | Q000379 |
| mesh[47].descriptor_ui | D011857 |
| mesh[47].is_major_topic | False |
| mesh[47].qualifier_name | methods |
| mesh[47].descriptor_name | Radiographic Image Interpretation, Computer-Assisted |
| mesh[48].qualifier_ui | |
| mesh[48].descriptor_ui | D000328 |
| mesh[48].is_major_topic | False |
| mesh[48].qualifier_name | |
| mesh[48].descriptor_name | Adult |
| mesh[49].qualifier_ui | |
| mesh[49].descriptor_ui | D006801 |
| mesh[49].is_major_topic | False |
| mesh[49].qualifier_name | |
| mesh[49].descriptor_name | Humans |
| type | article |
| title | Renal tumor segmentation, visualization, and segmentation confidence using ensembles of neural networks in patients undergoing surgical resection |
| biblio.issue | 4 |
| biblio.volume | 35 |
| biblio.last_page | 2156 |
| biblio.first_page | 2147 |
| topics[0].id | https://openalex.org/T10449 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Renal cell carcinoma treatment |
| topics[1].id | https://openalex.org/T12386 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.993399977684021 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2204 |
| topics[1].subfield.display_name | Biomedical Engineering |
| topics[1].display_name | Advanced X-ray and CT Imaging |
| topics[2].id | https://openalex.org/T12422 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9932000041007996 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2741 |
| topics[2].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[2].display_name | Radiomics and Machine Learning in Medical Imaging |
| funders[0].id | https://openalex.org/F4320318756 |
| funders[0].ror | https://ror.org/021ft0n22 |
| funders[0].display_name | Universitätsmedizin Göttingen |
| is_xpac | False |
| apc_list.value | 3290 |
| apc_list.currency | EUR |
| apc_list.value_usd | 3990 |
| apc_paid.value | 3290 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 3990 |
| concepts[0].id | https://openalex.org/C89600930 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7718466520309448 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[0].display_name | Segmentation |
| concepts[1].id | https://openalex.org/C71924100 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7597614526748657 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[1].display_name | Medicine |
| concepts[2].id | https://openalex.org/C44249647 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5943822860717773 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[2].display_name | Confidence interval |
| concepts[3].id | https://openalex.org/C126838900 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4826991558074951 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[3].display_name | Radiology |
| concepts[4].id | https://openalex.org/C2779889316 |
| concepts[4].level | 3 |
| concepts[4].score | 0.46533316373825073 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q642836 |
| concepts[4].display_name | Neuroradiology |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.38546478748321533 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C126322002 |
| concepts[6].level | 1 |
| concepts[6].score | 0.23373469710350037 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[6].display_name | Internal medicine |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.17421606183052063 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C16568411 |
| concepts[8].level | 2 |
| concepts[8].score | 0.09872666001319885 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q83042 |
| concepts[8].display_name | Neurology |
| concepts[9].id | https://openalex.org/C118552586 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[9].display_name | Psychiatry |
| keywords[0].id | https://openalex.org/keywords/segmentation |
| keywords[0].score | 0.7718466520309448 |
| keywords[0].display_name | Segmentation |
| keywords[1].id | https://openalex.org/keywords/medicine |
| keywords[1].score | 0.7597614526748657 |
| keywords[1].display_name | Medicine |
| keywords[2].id | https://openalex.org/keywords/confidence-interval |
| keywords[2].score | 0.5943822860717773 |
| keywords[2].display_name | Confidence interval |
| keywords[3].id | https://openalex.org/keywords/radiology |
| keywords[3].score | 0.4826991558074951 |
| keywords[3].display_name | Radiology |
| keywords[4].id | https://openalex.org/keywords/neuroradiology |
| keywords[4].score | 0.46533316373825073 |
| keywords[4].display_name | Neuroradiology |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.38546478748321533 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/internal-medicine |
| keywords[6].score | 0.23373469710350037 |
| keywords[6].display_name | Internal medicine |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.17421606183052063 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/neurology |
| keywords[8].score | 0.09872666001319885 |
| keywords[8].display_name | Neurology |
| language | en |
| locations[0].id | doi:10.1007/s00330-024-11026-6 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4819472 |
| locations[0].source.issn | 0938-7994, 1432-1084 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0938-7994 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | European Radiology |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | European Radiology |
| locations[0].landing_page_url | https://doi.org/10.1007/s00330-024-11026-6 |
| locations[1].id | pmid:39177855 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | European radiology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/39177855 |
| locations[2].id | pmh:oai:publications.goettingen-research-online.de:2/145283 |
| locations[2].is_oa | True |
| locations[2].source | |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | yes |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | |
| locations[2].landing_page_url | https://resolver.sub.uni-goettingen.de/purl?gro-2/145283 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:11913914 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Eur Radiol |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/11913914 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5052162831 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Sophie Bachanek |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Clinical and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Sophie Bachanek |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Clinical and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany |
| authorships[1].author.id | https://openalex.org/A5106674917 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Paul Wuerzberg |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I74656192 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Medical Bioinformatics, University Medical Center Goettingen, Goettingen, Germany |
| authorships[1].institutions[0].id | https://openalex.org/I74656192 |
| authorships[1].institutions[0].ror | https://ror.org/01y9bpm73 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I74656192 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | University of Göttingen |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Paul Wuerzberg |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Medical Bioinformatics, University Medical Center Goettingen, Goettingen, Germany |
| authorships[2].author.id | https://openalex.org/A5047825471 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Lorenz Biggemann |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Clinical and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Lorenz Biggemann |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Clinical and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany |
| authorships[3].author.id | https://openalex.org/A5113344639 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Tanja Yani Janssen |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Clinical and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tanja Yani Janssen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Clinical and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany |
| authorships[4].author.id | https://openalex.org/A5084828703 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-5443-7943 |
| authorships[4].author.display_name | Manuel Nietert |
| authorships[4].countries | DE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I74656192 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Medical Bioinformatics, University Medical Center Goettingen, Goettingen, Germany |
| authorships[4].institutions[0].id | https://openalex.org/I74656192 |
| authorships[4].institutions[0].ror | https://ror.org/01y9bpm73 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I74656192 |
| authorships[4].institutions[0].country_code | DE |
| authorships[4].institutions[0].display_name | University of Göttingen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Manuel Nietert |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Medical Bioinformatics, University Medical Center Goettingen, Goettingen, Germany |
| authorships[5].author.id | https://openalex.org/A5079121874 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1412-2741 |
| authorships[5].author.display_name | Joachim Lotz |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Cardiac Radiology, University Medical Center Goettingen, Goettingen, Germany |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Joachim Lotz |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Cardiac Radiology, University Medical Center Goettingen, Goettingen, Germany |
| authorships[6].author.id | https://openalex.org/A5057384030 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8898-6588 |
| authorships[6].author.display_name | Philip Zeuschner |
| authorships[6].countries | DE |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I91712215 |
| authorships[6].affiliations[0].raw_affiliation_string | Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany |
| authorships[6].institutions[0].id | https://openalex.org/I91712215 |
| authorships[6].institutions[0].ror | https://ror.org/01jdpyv68 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I91712215 |
| authorships[6].institutions[0].country_code | DE |
| authorships[6].institutions[0].display_name | Saarland University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Philip Zeuschner |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany |
| authorships[7].author.id | https://openalex.org/A5064044415 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-5510-653X |
| authorships[7].author.display_name | Alexander Maßmann |
| authorships[7].countries | DE |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I2802768257, https://openalex.org/I4403386655 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Radiology & Nuclear Medicine, Robert-Bosch-Krankenhaus, Bosch Health Campus, Stuttgart, Germany |
| authorships[7].institutions[0].id | https://openalex.org/I4403386655 |
| authorships[7].institutions[0].ror | https://ror.org/054gdnq27 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I2802101015, https://openalex.org/I4403386655 |
| authorships[7].institutions[0].country_code | |
| authorships[7].institutions[0].display_name | Bosch Health Campus |
| authorships[7].institutions[1].id | https://openalex.org/I2802768257 |
| authorships[7].institutions[1].ror | https://ror.org/034nkkr84 |
| authorships[7].institutions[1].type | healthcare |
| authorships[7].institutions[1].lineage | https://openalex.org/I2802101015, https://openalex.org/I2802768257, https://openalex.org/I4403386655 |
| authorships[7].institutions[1].country_code | DE |
| authorships[7].institutions[1].display_name | Robert Bosch Hospital |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Alexander Maßmann |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Radiology & Nuclear Medicine, Robert-Bosch-Krankenhaus, Bosch Health Campus, Stuttgart, Germany |
| authorships[8].author.id | https://openalex.org/A5062504059 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-7305-9271 |
| authorships[8].author.display_name | Annemarie Uhlig |
| authorships[8].affiliations[0].raw_affiliation_string | Department of Urology, University Medical Center Goettingen, Goettingen, Germany |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Annemarie Uhlig |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Department of Urology, University Medical Center Goettingen, Goettingen, Germany |
| authorships[9].author.id | https://openalex.org/A5055522759 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-3557-3194 |
| authorships[9].author.display_name | Johannes Uhlig |
| authorships[9].countries | DE |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I74656192 |
| authorships[9].affiliations[0].raw_affiliation_string | Campus Institute for Data Science (CIDAS), Section of Medical Data Science (MeDaS), University of Goettingen, Goettingen, Germany |
| authorships[9].institutions[0].id | https://openalex.org/I74656192 |
| authorships[9].institutions[0].ror | https://ror.org/01y9bpm73 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I74656192 |
| authorships[9].institutions[0].country_code | DE |
| authorships[9].institutions[0].display_name | University of Göttingen |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Johannes Uhlig |
| authorships[9].is_corresponding | True |
| authorships[9].raw_affiliation_strings | Campus Institute for Data Science (CIDAS), Section of Medical Data Science (MeDaS), University of Goettingen, Goettingen, Germany |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1007/s00330-024-11026-6 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Renal tumor segmentation, visualization, and segmentation confidence using ensembles of neural networks in patients undergoing surgical resection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10449 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Renal cell carcinoma treatment |
| related_works | https://openalex.org/W2417916121, https://openalex.org/W4253904327, https://openalex.org/W4238317426, https://openalex.org/W4241681448, https://openalex.org/W2011391747, https://openalex.org/W4244498943, https://openalex.org/W2120185406, https://openalex.org/W2129950328, https://openalex.org/W2984433450, https://openalex.org/W4391998712 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 6 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1007/s00330-024-11026-6 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4819472 |
| best_oa_location.source.issn | 0938-7994, 1432-1084 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0938-7994 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | European Radiology |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | European Radiology |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s00330-024-11026-6 |
| primary_location.id | doi:10.1007/s00330-024-11026-6 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4819472 |
| primary_location.source.issn | 0938-7994, 1432-1084 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0938-7994 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | European Radiology |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | European Radiology |
| primary_location.landing_page_url | https://doi.org/10.1007/s00330-024-11026-6 |
| publication_date | 2024-08-23 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2097096070, https://openalex.org/W2801712658, https://openalex.org/W2780615230, https://openalex.org/W3137855389, https://openalex.org/W2775645965, https://openalex.org/W2078234387, https://openalex.org/W2157625270, https://openalex.org/W2889615630, https://openalex.org/W4205452677, https://openalex.org/W3046117255, https://openalex.org/W3090605478, https://openalex.org/W2021592757, https://openalex.org/W2917524635, https://openalex.org/W3036319923, https://openalex.org/W2991523350, https://openalex.org/W3035546112, https://openalex.org/W3098712157 |
| referenced_works_count | 17 |
| abstract_inverted_index.( | 149, 166 |
| abstract_inverted_index.. | 339, 356, 373 |
| abstract_inverted_index.= | 127, 130, 183, 201, 204, 207, 222, 234, 237, 241 |
| abstract_inverted_index.N | 126 |
| abstract_inverted_index.a | 179, 218, 342 |
| abstract_inverted_index.n | 129 |
| abstract_inverted_index.p | 150, 167 |
| abstract_inverted_index.CM | 193, 227 |
| abstract_inverted_index.CT | 46, 64, 257 |
| abstract_inverted_index.In | 170, 209 |
| abstract_inverted_index.To | 2 |
| abstract_inverted_index.an | 4, 199, 232, 351 |
| abstract_inverted_index.as | 67 |
| abstract_inverted_index.by | 332 |
| abstract_inverted_index.in | 47, 135, 156, 266, 273, 346, 350 |
| abstract_inverted_index.is | 330 |
| abstract_inverted_index.of | 85, 284, 325, 361 |
| abstract_inverted_index.on | 12, 61, 77, 255, 294, 312 |
| abstract_inverted_index.or | 50 |
| abstract_inverted_index.to | 16, 22 |
| abstract_inverted_index.0.8 | 119 |
| abstract_inverted_index.210 | 131 |
| abstract_inverted_index.AUC | 200 |
| abstract_inverted_index.CTs | 14 |
| abstract_inverted_index.ENN | 105, 176, 215, 243, 320, 340, 357 |
| abstract_inverted_index.Key | 322 |
| abstract_inverted_index.The | 29 |
| abstract_inverted_index.age | 146 |
| abstract_inverted_index.aid | 272 |
| abstract_inverted_index.all | 62 |
| abstract_inverted_index.and | 15, 27, 44, 97, 138, 147, 162, 188, 195, 229, 239, 252, 270, 277, 298, 303, 309, 337, 349, 370 |
| abstract_inverted_index.can | 314, 365 |
| abstract_inverted_index.for | 8, 70, 92, 318 |
| abstract_inverted_index.sex | 148 |
| abstract_inverted_index.the | 48, 78, 136, 157, 171, 175, 196, 210, 214, 316 |
| abstract_inverted_index.two | 38 |
| abstract_inverted_index.was | 59, 75, 100 |
| abstract_inverted_index.≤ | 123 |
| abstract_inverted_index.> | 118, 151 |
| abstract_inverted_index.< | 168 |
| abstract_inverted_index.(CM) | 54 |
| abstract_inverted_index.0.84 | 184, 223, 235 |
| abstract_inverted_index.0.86 | 189, 238 |
| abstract_inverted_index.0.89 | 202 |
| abstract_inverted_index.2019 | 82 |
| abstract_inverted_index.639/ | 128 |
| abstract_inverted_index.CTs, | 296 |
| abstract_inverted_index.DICE | 103, 116, 181, 220 |
| abstract_inverted_index.KiTS | 81 |
| abstract_inverted_index.data | 269 |
| abstract_inverted_index.from | 37 |
| abstract_inverted_index.high | 343 |
| abstract_inverted_index.more | 163 |
| abstract_inverted_index.test | 140, 173, 212, 268, 354 |
| abstract_inverted_index.used | 91 |
| abstract_inverted_index.were | 90, 133, 143, 160, 245 |
| abstract_inverted_index.with | 19, 102, 115, 247 |
| abstract_inverted_index.(ENN) | 287, 328 |
| abstract_inverted_index.(ENN, | 88 |
| abstract_inverted_index.(IQR: | 185, 190, 224 |
| abstract_inverted_index.0.8). | 124 |
| abstract_inverted_index.0.86; | 205 |
| abstract_inverted_index.axial | 63 |
| abstract_inverted_index.could | 289 |
| abstract_inverted_index.image | 301 |
| abstract_inverted_index.lower | 315 |
| abstract_inverted_index.media | 53 |
| abstract_inverted_index.might | 271 |
| abstract_inverted_index.model | 7, 177, 216 |
| abstract_inverted_index.renal | 10, 34, 94, 154, 261, 274, 292 |
| abstract_inverted_index.score | 117, 182, 221 |
| abstract_inverted_index.solid | 9, 33 |
| abstract_inverted_index.their | 98 |
| abstract_inverted_index.tumor | 35, 57, 95, 250, 262, 275, 335 |
| abstract_inverted_index.which | 364 |
| abstract_inverted_index.while | 153 |
| abstract_inverted_index.0.01). | 169 |
| abstract_inverted_index.0.05), | 152 |
| abstract_inverted_index.0.77). | 208 |
| abstract_inverted_index.0.81). | 242 |
| abstract_inverted_index.Manual | 56 |
| abstract_inverted_index.Points | 323 |
| abstract_inverted_index.benign | 165 |
| abstract_inverted_index.images | 313 |
| abstract_inverted_index.larger | 161 |
| abstract_inverted_index.median | 180, 219 |
| abstract_inverted_index.models | 288, 358 |
| abstract_inverted_index.neural | 86, 285, 326 |
| abstract_inverted_index.phase. | 55 |
| abstract_inverted_index.score. | 104 |
| abstract_inverted_index.slices | 65 |
| abstract_inverted_index.tumors | 11, 155, 293 |
| abstract_inverted_index.versus | 120 |
| abstract_inverted_index.Results | 125 |
| abstract_inverted_index.average | 106 |
| abstract_inverted_index.between | 368 |
| abstract_inverted_index.centers | 40 |
| abstract_inverted_index.dataset | 31, 159, 355 |
| abstract_inverted_index.develop | 3 |
| abstract_inverted_index.entropy | 108 |
| abstract_inverted_index.images. | 258 |
| abstract_inverted_index.methods | 28 |
| abstract_inverted_index.phase), | 194 |
| abstract_inverted_index.phase); | 228 |
| abstract_inverted_index.promote | 23 |
| abstract_inverted_index.provide | 359 |
| abstract_inverted_index.routine | 295 |
| abstract_inverted_index.segment | 291 |
| abstract_inverted_index.serving | 66 |
| abstract_inverted_index.testing | 74, 348 |
| abstract_inverted_index.yielded | 178 |
| abstract_inverted_index.(binary: | 112 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Clinical | 280 |
| abstract_inverted_index.Datasets | 142 |
| abstract_inverted_index.accuracy | 233, 345 |
| abstract_inverted_index.achieved | 217 |
| abstract_inverted_index.analyses | 302 |
| abstract_inverted_index.clinical | 24, 256, 319 |
| abstract_inverted_index.contrast | 52 |
| abstract_inverted_index.dataset, | 174, 213 |
| abstract_inverted_index.dataset. | 83, 141 |
| abstract_inverted_index.enabling | 297 |
| abstract_inverted_index.external | 267, 353 |
| abstract_inverted_index.included | 32, 134 |
| abstract_inverted_index.internal | 172, 347 |
| abstract_inverted_index.measured | 109 |
| abstract_inverted_index.measures | 308, 360 |
| abstract_inverted_index.networks | 87, 286, 327 |
| abstract_inverted_index.overlays | 311 |
| abstract_inverted_index.patients | 36, 132 |
| abstract_inverted_index.performs | 265 |
| abstract_inverted_index.provided | 341 |
| abstract_inverted_index.publicly | 79 |
| abstract_inverted_index.robustly | 264, 366 |
| abstract_inverted_index.standard | 69 |
| abstract_inverted_index.surgical | 42 |
| abstract_inverted_index.tertiary | 39 |
| abstract_inverted_index.training | 30, 137, 158 |
| abstract_inverted_index.ENN-based | 260 |
| abstract_inverted_index.Ensembles | 84, 283, 324 |
| abstract_inverted_index.Materials | 26 |
| abstract_inverted_index.Providing | 306 |
| abstract_inverted_index.automatic | 5, 71, 93 |
| abstract_inverted_index.available | 80 |
| abstract_inverted_index.performed | 60, 76 |
| abstract_inverted_index.planning. | 279, 305 |
| abstract_inverted_index.receiving | 45 |
| abstract_inverted_index.reference | 68 |
| abstract_inverted_index.regarding | 145 |
| abstract_inverted_index.relevance | 281 |
| abstract_inverted_index.resection | 43 |
| abstract_inverted_index.statement | 282 |
| abstract_inverted_index.threshold | 317 |
| abstract_inverted_index.treatment | 278, 304 |
| abstract_inverted_index.visualize | 17 |
| abstract_inverted_index.voxelwise | 249, 334 |
| abstract_inverted_index.DeepLabV3) | 89 |
| abstract_inverted_index.Objectives | 1 |
| abstract_inverted_index.associated | 20 |
| abstract_inverted_index.comparable | 144 |
| abstract_inverted_index.confidence | 21, 111, 198, 231, 307, 363 |
| abstract_inverted_index.downstream | 300 |
| abstract_inverted_index.foreground | 107 |
| abstract_inverted_index.frequently | 164 |
| abstract_inverted_index.inadequate | 121, 371 |
| abstract_inverted_index.quantified | 101 |
| abstract_inverted_index.successful | 113, 369 |
| abstract_inverted_index.thresholds | 253, 338 |
| abstract_inverted_index.undergoing | 41 |
| abstract_inverted_index.visualized | 246, 331 |
| abstract_inverted_index.Conclusions | 259 |
| abstract_inverted_index.Independent | 73 |
| abstract_inverted_index.color-coded | 248, 333 |
| abstract_inverted_index.independent | 139, 211, 352 |
| abstract_inverted_index.nephrogenic | 51, 192 |
| abstract_inverted_index.performance | 99 |
| abstract_inverted_index.specificity | 206, 240 |
| abstract_inverted_index.(sensitivity | 203, 236 |
| abstract_inverted_index.0.62–0.97, | 186 |
| abstract_inverted_index.0.71–0.97, | 225 |
| abstract_inverted_index.0.77–0.96, | 191 |
| abstract_inverted_index.discriminate | 367 |
| abstract_inverted_index.segmentation | 6, 18, 58, 110, 114, 122, 197, 230, 263, 310, 329, 344, 362 |
| abstract_inverted_index.superimposed | 254 |
| abstract_inverted_index.automatically | 290 |
| abstract_inverted_index.probabilities | 251, 336 |
| abstract_inverted_index.segmentation, | 96 |
| abstract_inverted_index.segmentations | 244, 372 |
| abstract_inverted_index.standardizing | 299 |
| abstract_inverted_index.applicability. | 25 |
| abstract_inverted_index.classification | 276 |
| abstract_inverted_index.segmentations. | 72 |
| abstract_inverted_index.implementation. | 321 |
| abstract_inverted_index.corticomedullary | 49, 226 |
| abstract_inverted_index.contrast-enhanced | 13 |
| abstract_inverted_index.corticomedullary) | 187 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 98 |
| corresponding_author_ids | https://openalex.org/A5055522759 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| corresponding_institution_ids | https://openalex.org/I74656192 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.46000000834465027 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.92862372 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |