Replication Data for: Balance as a Pre-Estimation Test for Time Series Analysis Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.7910/dvn/g0xxse
It is understood that ensuring equation balance is a necessary condition for a valid model of times series data. Yet, the definition of balance provided so far has been incomplete and there has not been a consistent understanding of exactly why balance is important or how it can be applied. The discussion to date has focused on the estimates produced by the GECM. In this paper, we go beyond the GECM and be- yond model estimates. We treat equation balance as a theoretical matter, not merely an empirical one, and describe how to use the concept of balance to test theoretical propositions before longitudinal data have been gathered. We explain how equation balance can be used to check if your theoretical or empirical model is either wrong or incomplete in a way that will prevent a meaningful interpretation of the model. We also raise the issue of “I(0) balance” and its importance. The replication dataset includes the Stata .do file and .dta file to replicate the analysis in section 4.1 of the Supplementary Information.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.7910/dvn/g0xxse
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4398515512
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4398515512Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.7910/dvn/g0xxseDigital Object Identifier
- Title
-
Replication Data for: Balance as a Pre-Estimation Test for Time Series AnalysisWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-09-30Full publication date if available
- Authors
-
Mark Pickup, Paul M. KellstedtList of authors in order
- Landing page
-
https://doi.org/10.7910/dvn/g0xxsePublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.7910/dvn/g0xxseDirect OA link when available
- Concepts
-
Replication (statistics), Series (stratigraphy), Estimation, Time series, Balance (ability), Test (biology), Statistics, Computer science, Mathematics, Biology, Medicine, Engineering, Physical medicine and rehabilitation, Paleontology, Systems engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4398515512 |
|---|---|
| doi | https://doi.org/10.7910/dvn/g0xxse |
| ids.doi | https://doi.org/10.7910/dvn/g0xxse |
| ids.openalex | https://openalex.org/W4398515512 |
| fwci | |
| type | dataset |
| title | Replication Data for: Balance as a Pre-Estimation Test for Time Series Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10320 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.1898999959230423 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Neural Networks and Applications |
| topics[1].id | https://openalex.org/T12205 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.18729999661445618 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1711 |
| topics[1].subfield.display_name | Signal Processing |
| topics[1].display_name | Time Series Analysis and Forecasting |
| topics[2].id | https://openalex.org/T11918 |
| topics[2].field.id | https://openalex.org/fields/18 |
| topics[2].field.display_name | Decision Sciences |
| topics[2].score | 0.18209999799728394 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1803 |
| topics[2].subfield.display_name | Management Science and Operations Research |
| topics[2].display_name | Forecasting Techniques and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C12590798 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8153248429298401 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3933199 |
| concepts[0].display_name | Replication (statistics) |
| concepts[1].id | https://openalex.org/C143724316 |
| concepts[1].level | 2 |
| concepts[1].score | 0.576829731464386 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[1].display_name | Series (stratigraphy) |
| concepts[2].id | https://openalex.org/C96250715 |
| concepts[2].level | 2 |
| concepts[2].score | 0.47417914867401123 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q965330 |
| concepts[2].display_name | Estimation |
| concepts[3].id | https://openalex.org/C151406439 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4673612117767334 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[3].display_name | Time series |
| concepts[4].id | https://openalex.org/C168031717 |
| concepts[4].level | 2 |
| concepts[4].score | 0.454036682844162 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1530280 |
| concepts[4].display_name | Balance (ability) |
| concepts[5].id | https://openalex.org/C2777267654 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4427797794342041 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3519023 |
| concepts[5].display_name | Test (biology) |
| concepts[6].id | https://openalex.org/C105795698 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4291200339794159 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[6].display_name | Statistics |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.41746535897254944 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.28790605068206787 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C86803240 |
| concepts[9].level | 0 |
| concepts[9].score | 0.16292491555213928 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[9].display_name | Biology |
| concepts[10].id | https://openalex.org/C71924100 |
| concepts[10].level | 0 |
| concepts[10].score | 0.13901695609092712 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[10].display_name | Medicine |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.11363571882247925 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C99508421 |
| concepts[12].level | 1 |
| concepts[12].score | 0.07833832502365112 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[12].display_name | Physical medicine and rehabilitation |
| concepts[13].id | https://openalex.org/C151730666 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[13].display_name | Paleontology |
| concepts[14].id | https://openalex.org/C201995342 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[14].display_name | Systems engineering |
| keywords[0].id | https://openalex.org/keywords/replication |
| keywords[0].score | 0.8153248429298401 |
| keywords[0].display_name | Replication (statistics) |
| keywords[1].id | https://openalex.org/keywords/series |
| keywords[1].score | 0.576829731464386 |
| keywords[1].display_name | Series (stratigraphy) |
| keywords[2].id | https://openalex.org/keywords/estimation |
| keywords[2].score | 0.47417914867401123 |
| keywords[2].display_name | Estimation |
| keywords[3].id | https://openalex.org/keywords/time-series |
| keywords[3].score | 0.4673612117767334 |
| keywords[3].display_name | Time series |
| keywords[4].id | https://openalex.org/keywords/balance |
| keywords[4].score | 0.454036682844162 |
| keywords[4].display_name | Balance (ability) |
| keywords[5].id | https://openalex.org/keywords/test |
| keywords[5].score | 0.4427797794342041 |
| keywords[5].display_name | Test (biology) |
| keywords[6].id | https://openalex.org/keywords/statistics |
| keywords[6].score | 0.4291200339794159 |
| keywords[6].display_name | Statistics |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.41746535897254944 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.28790605068206787 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/biology |
| keywords[9].score | 0.16292491555213928 |
| keywords[9].display_name | Biology |
| keywords[10].id | https://openalex.org/keywords/medicine |
| keywords[10].score | 0.13901695609092712 |
| keywords[10].display_name | Medicine |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.11363571882247925 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[12].score | 0.07833832502365112 |
| keywords[12].display_name | Physical medicine and rehabilitation |
| language | en |
| locations[0].id | doi:10.7910/dvn/g0xxse |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4377196806 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Harvard Dataverse |
| locations[0].source.host_organization | https://openalex.org/I136199984 |
| locations[0].source.host_organization_name | Harvard University |
| locations[0].source.host_organization_lineage | https://openalex.org/I136199984 |
| locations[0].license | public-domain |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/public-domain |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.7910/dvn/g0xxse |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5057601388 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0539-1138 |
| authorships[0].author.display_name | Mark Pickup |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I18014758 |
| authorships[0].affiliations[0].raw_affiliation_string | (Simon Fraser University) |
| authorships[0].institutions[0].id | https://openalex.org/I18014758 |
| authorships[0].institutions[0].ror | https://ror.org/0213rcc28 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I18014758 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | Simon Fraser University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mark Pickup |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | (Simon Fraser University) |
| authorships[1].author.id | https://openalex.org/A5017093934 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-9446-2721 |
| authorships[1].author.display_name | Paul M. Kellstedt |
| authorships[1].affiliations[0].raw_affiliation_string | (Texas A) |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Paul Kellstedt |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | (Texas A) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.7910/dvn/g0xxse |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Replication Data for: Balance as a Pre-Estimation Test for Time Series Analysis |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10320 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.1898999959230423 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Neural Networks and Applications |
| related_works | https://openalex.org/W4205713785, https://openalex.org/W3016766501, https://openalex.org/W4398287560, https://openalex.org/W2901033488, https://openalex.org/W4398472861, https://openalex.org/W4398279827, https://openalex.org/W4398298065, https://openalex.org/W2622688551, https://openalex.org/W1550175370, https://openalex.org/W1990205660 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.7910/dvn/g0xxse |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4377196806 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Harvard Dataverse |
| best_oa_location.source.host_organization | https://openalex.org/I136199984 |
| best_oa_location.source.host_organization_name | Harvard University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I136199984 |
| best_oa_location.license | public-domain |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/public-domain |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.7910/dvn/g0xxse |
| primary_location.id | doi:10.7910/dvn/g0xxse |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4377196806 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Harvard Dataverse |
| primary_location.source.host_organization | https://openalex.org/I136199984 |
| primary_location.source.host_organization_name | Harvard University |
| primary_location.source.host_organization_lineage | https://openalex.org/I136199984 |
| primary_location.license | public-domain |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/public-domain |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.7910/dvn/g0xxse |
| publication_date | 2021-09-30 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 8, 12, 35, 81, 130, 135 |
| abstract_inverted_index.In | 63 |
| abstract_inverted_index.It | 0 |
| abstract_inverted_index.We | 76, 108, 141 |
| abstract_inverted_index.an | 86 |
| abstract_inverted_index.as | 80 |
| abstract_inverted_index.be | 48, 114 |
| abstract_inverted_index.by | 60 |
| abstract_inverted_index.go | 67 |
| abstract_inverted_index.if | 118 |
| abstract_inverted_index.in | 129, 169 |
| abstract_inverted_index.is | 1, 7, 42, 124 |
| abstract_inverted_index.it | 46 |
| abstract_inverted_index.of | 15, 22, 38, 96, 138, 146, 172 |
| abstract_inverted_index.on | 56 |
| abstract_inverted_index.or | 44, 121, 127 |
| abstract_inverted_index.so | 25 |
| abstract_inverted_index.to | 52, 92, 98, 116, 165 |
| abstract_inverted_index.we | 66 |
| abstract_inverted_index..do | 160 |
| abstract_inverted_index.4.1 | 171 |
| abstract_inverted_index.The | 50, 154 |
| abstract_inverted_index.and | 30, 71, 89, 149, 162 |
| abstract_inverted_index.be- | 72 |
| abstract_inverted_index.can | 47, 113 |
| abstract_inverted_index.far | 26 |
| abstract_inverted_index.for | 11 |
| abstract_inverted_index.has | 27, 32, 54 |
| abstract_inverted_index.how | 45, 91, 110 |
| abstract_inverted_index.its | 150 |
| abstract_inverted_index.not | 33, 84 |
| abstract_inverted_index.the | 20, 57, 61, 69, 94, 139, 144, 158, 167, 173 |
| abstract_inverted_index.use | 93 |
| abstract_inverted_index.way | 131 |
| abstract_inverted_index.why | 40 |
| abstract_inverted_index..dta | 163 |
| abstract_inverted_index.GECM | 70 |
| abstract_inverted_index.Yet, | 19 |
| abstract_inverted_index.also | 142 |
| abstract_inverted_index.been | 28, 34, 106 |
| abstract_inverted_index.data | 104 |
| abstract_inverted_index.date | 53 |
| abstract_inverted_index.file | 161, 164 |
| abstract_inverted_index.have | 105 |
| abstract_inverted_index.one, | 88 |
| abstract_inverted_index.test | 99 |
| abstract_inverted_index.that | 3, 132 |
| abstract_inverted_index.this | 64 |
| abstract_inverted_index.used | 115 |
| abstract_inverted_index.will | 133 |
| abstract_inverted_index.yond | 73 |
| abstract_inverted_index.your | 119 |
| abstract_inverted_index.GECM. | 62 |
| abstract_inverted_index.Stata | 159 |
| abstract_inverted_index.check | 117 |
| abstract_inverted_index.data. | 18 |
| abstract_inverted_index.issue | 145 |
| abstract_inverted_index.model | 14, 74, 123 |
| abstract_inverted_index.raise | 143 |
| abstract_inverted_index.there | 31 |
| abstract_inverted_index.times | 16 |
| abstract_inverted_index.treat | 77 |
| abstract_inverted_index.valid | 13 |
| abstract_inverted_index.wrong | 126 |
| abstract_inverted_index.before | 102 |
| abstract_inverted_index.beyond | 68 |
| abstract_inverted_index.either | 125 |
| abstract_inverted_index.merely | 85 |
| abstract_inverted_index.model. | 140 |
| abstract_inverted_index.paper, | 65 |
| abstract_inverted_index.series | 17 |
| abstract_inverted_index.balance | 6, 23, 41, 79, 97, 112 |
| abstract_inverted_index.concept | 95 |
| abstract_inverted_index.dataset | 156 |
| abstract_inverted_index.exactly | 39 |
| abstract_inverted_index.explain | 109 |
| abstract_inverted_index.focused | 55 |
| abstract_inverted_index.matter, | 83 |
| abstract_inverted_index.prevent | 134 |
| abstract_inverted_index.section | 170 |
| abstract_inverted_index.“I(0) | 147 |
| abstract_inverted_index.analysis | 168 |
| abstract_inverted_index.applied. | 49 |
| abstract_inverted_index.describe | 90 |
| abstract_inverted_index.ensuring | 4 |
| abstract_inverted_index.equation | 5, 78, 111 |
| abstract_inverted_index.includes | 157 |
| abstract_inverted_index.produced | 59 |
| abstract_inverted_index.provided | 24 |
| abstract_inverted_index.condition | 10 |
| abstract_inverted_index.empirical | 87, 122 |
| abstract_inverted_index.estimates | 58 |
| abstract_inverted_index.gathered. | 107 |
| abstract_inverted_index.important | 43 |
| abstract_inverted_index.necessary | 9 |
| abstract_inverted_index.replicate | 166 |
| abstract_inverted_index.<br> | 152, 153 |
| abstract_inverted_index.balance” | 148 |
| abstract_inverted_index.consistent | 36 |
| abstract_inverted_index.definition | 21 |
| abstract_inverted_index.discussion | 51 |
| abstract_inverted_index.estimates. | 75 |
| abstract_inverted_index.incomplete | 29, 128 |
| abstract_inverted_index.meaningful | 136 |
| abstract_inverted_index.understood | 2 |
| abstract_inverted_index.importance. | 151 |
| abstract_inverted_index.replication | 155 |
| abstract_inverted_index.theoretical | 82, 100, 120 |
| abstract_inverted_index.Information. | 175 |
| abstract_inverted_index.longitudinal | 103 |
| abstract_inverted_index.propositions | 101 |
| abstract_inverted_index.Supplementary | 174 |
| abstract_inverted_index.understanding | 37 |
| abstract_inverted_index.interpretation | 137 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |