Replication Data for: Forecasting multiparty by-elections using Dirichlet regression Article Swipe
Replication data for this article. Relative file paths may need to be changed to make sure the code runs properly.
Related Topics
Concepts
Metadata
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.7910/dvn/juqpdc
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4398411110
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4398411110Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.7910/dvn/juqpdcDigital Object Identifier
- Title
-
Replication Data for: Forecasting multiparty by-elections using Dirichlet regressionWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-07-29Full publication date if available
- Authors
-
Chris HanrettyList of authors in order
- Landing page
-
https://doi.org/10.7910/dvn/juqpdcPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.7910/dvn/juqpdcDirect OA link when available
- Concepts
-
Replication (statistics), Regression, Regression analysis, Computer science, Latent Dirichlet allocation, Econometrics, Statistics, Artificial intelligence, Mathematics, Machine learning, Topic modelTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4398411110 |
|---|---|
| doi | https://doi.org/10.7910/dvn/juqpdc |
| ids.doi | https://doi.org/10.7910/dvn/juqpdc |
| ids.openalex | https://openalex.org/W4398411110 |
| fwci | |
| type | dataset |
| title | Replication Data for: Forecasting multiparty by-elections using Dirichlet regression |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12592 |
| topics[0].field.id | https://openalex.org/fields/31 |
| topics[0].field.display_name | Physics and Astronomy |
| topics[0].score | 0.8970000147819519 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3109 |
| topics[0].subfield.display_name | Statistical and Nonlinear Physics |
| topics[0].display_name | Opinion Dynamics and Social Influence |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C12590798 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8462111949920654 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3933199 |
| concepts[0].display_name | Replication (statistics) |
| concepts[1].id | https://openalex.org/C83546350 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5907307863235474 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1139051 |
| concepts[1].display_name | Regression |
| concepts[2].id | https://openalex.org/C152877465 |
| concepts[2].level | 2 |
| concepts[2].score | 0.45421233773231506 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[2].display_name | Regression analysis |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.44601866602897644 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C500882744 |
| concepts[4].level | 3 |
| concepts[4].score | 0.4265739917755127 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q269236 |
| concepts[4].display_name | Latent Dirichlet allocation |
| concepts[5].id | https://openalex.org/C149782125 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3896263837814331 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q160039 |
| concepts[5].display_name | Econometrics |
| concepts[6].id | https://openalex.org/C105795698 |
| concepts[6].level | 1 |
| concepts[6].score | 0.33941441774368286 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[6].display_name | Statistics |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.23710519075393677 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.23624804615974426 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.14613211154937744 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C171686336 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0725441575050354 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3532085 |
| concepts[10].display_name | Topic model |
| keywords[0].id | https://openalex.org/keywords/replication |
| keywords[0].score | 0.8462111949920654 |
| keywords[0].display_name | Replication (statistics) |
| keywords[1].id | https://openalex.org/keywords/regression |
| keywords[1].score | 0.5907307863235474 |
| keywords[1].display_name | Regression |
| keywords[2].id | https://openalex.org/keywords/regression-analysis |
| keywords[2].score | 0.45421233773231506 |
| keywords[2].display_name | Regression analysis |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.44601866602897644 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/latent-dirichlet-allocation |
| keywords[4].score | 0.4265739917755127 |
| keywords[4].display_name | Latent Dirichlet allocation |
| keywords[5].id | https://openalex.org/keywords/econometrics |
| keywords[5].score | 0.3896263837814331 |
| keywords[5].display_name | Econometrics |
| keywords[6].id | https://openalex.org/keywords/statistics |
| keywords[6].score | 0.33941441774368286 |
| keywords[6].display_name | Statistics |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.23710519075393677 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.23624804615974426 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.14613211154937744 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/topic-model |
| keywords[10].score | 0.0725441575050354 |
| keywords[10].display_name | Topic model |
| language | en |
| locations[0].id | doi:10.7910/dvn/juqpdc |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4377196806 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Harvard Dataverse |
| locations[0].source.host_organization | https://openalex.org/I136199984 |
| locations[0].source.host_organization_name | Harvard University |
| locations[0].source.host_organization_lineage | https://openalex.org/I136199984 |
| locations[0].license | public-domain |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/public-domain |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.7910/dvn/juqpdc |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5087517981 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-8932-9405 |
| authorships[0].author.display_name | Chris Hanretty |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I184558857 |
| authorships[0].affiliations[0].raw_affiliation_string | (Royal Holloway University of London) |
| authorships[0].institutions[0].id | https://openalex.org/I184558857 |
| authorships[0].institutions[0].ror | https://ror.org/04g2vpn86 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I184558857 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Royal Holloway University of London |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chris Hanretty |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | (Royal Holloway University of London) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.7910/dvn/juqpdc |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Replication Data for: Forecasting multiparty by-elections using Dirichlet regression |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12592 |
| primary_topic.field.id | https://openalex.org/fields/31 |
| primary_topic.field.display_name | Physics and Astronomy |
| primary_topic.score | 0.8970000147819519 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3109 |
| primary_topic.subfield.display_name | Statistical and Nonlinear Physics |
| primary_topic.display_name | Opinion Dynamics and Social Influence |
| related_works | https://openalex.org/W31220157, https://openalex.org/W2312753042, https://openalex.org/W4289356671, https://openalex.org/W2389155397, https://openalex.org/W2165884543, https://openalex.org/W3186837933, https://openalex.org/W2368989808, https://openalex.org/W2034959125, https://openalex.org/W2355687852, https://openalex.org/W2621086889 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.7910/dvn/juqpdc |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4377196806 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Harvard Dataverse |
| best_oa_location.source.host_organization | https://openalex.org/I136199984 |
| best_oa_location.source.host_organization_name | Harvard University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I136199984 |
| best_oa_location.license | public-domain |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/public-domain |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.7910/dvn/juqpdc |
| primary_location.id | doi:10.7910/dvn/juqpdc |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4377196806 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Harvard Dataverse |
| primary_location.source.host_organization | https://openalex.org/I136199984 |
| primary_location.source.host_organization_name | Harvard University |
| primary_location.source.host_organization_lineage | https://openalex.org/I136199984 |
| primary_location.license | public-domain |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/public-domain |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.7910/dvn/juqpdc |
| publication_date | 2021-07-29 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.be | 11 |
| abstract_inverted_index.to | 10, 13 |
| abstract_inverted_index.for | 2 |
| abstract_inverted_index.may | 8 |
| abstract_inverted_index.the | 16 |
| abstract_inverted_index.code | 17 |
| abstract_inverted_index.data | 1 |
| abstract_inverted_index.file | 6 |
| abstract_inverted_index.make | 14 |
| abstract_inverted_index.need | 9 |
| abstract_inverted_index.runs | 18 |
| abstract_inverted_index.sure | 15 |
| abstract_inverted_index.this | 3 |
| abstract_inverted_index.paths | 7 |
| abstract_inverted_index.changed | 12 |
| abstract_inverted_index.Relative | 5 |
| abstract_inverted_index.article. | 4 |
| abstract_inverted_index.properly. | 19 |
| abstract_inverted_index.Replication | 0 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5087517981 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I184558857 |
| citation_normalized_percentile |