Replication Data for: Strategies of Chinese State Media on Twitter Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.7910/dvn/evvqgv
How do state-controlled broadcasters reach foreign publics to engage in public diplomacy in the era of social media? Previous research suggests that features unique to social media, such as the ability to engage in two-way communication with audiences, provide state-controlled broadcasters new opportunities for online public diplomacy. In this paper, we examine what strategies were used by four Chinese state-controlled media outlets on Twitter to reach foreign publics as the Chinese Communist Party worked to expand its public diplomacy and international media outreach efforts. We find that all outlets increased the volume and diversity of content while none engaged in interactive, two-way communication with audiences, and none appeared to artificially inflate their follower count. One outlet, China Global Television Network, made outsized gains in followership, and it differs from the other Chinese outlets in that it was rebranded, it disseminated a relatively lower share of government-mandated narratives pertaining to China, and the tone of its reporting was more negative. These results show that during a period when Chinese state-controlled broadcasters gained followers on Twitter, outlets made limited use of features unique to social media and instead primarily used social media as a broadcast channel
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.7910/dvn/evvqgv
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4398311196
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4398311196Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.7910/dvn/evvqgvDigital Object Identifier
- Title
-
Replication Data for: Strategies of Chinese State Media on TwitterWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-07-06Full publication date if available
- Authors
-
Yingjie Fan, Jennifer Pan, Jaymee ShengList of authors in order
- Landing page
-
https://doi.org/10.7910/dvn/evvqgvPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.7910/dvn/evvqgvDirect OA link when available
- Concepts
-
Replication (statistics), State (computer science), Computer science, Internet privacy, Biology, Programming language, VirologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4398311196 |
|---|---|
| doi | https://doi.org/10.7910/dvn/evvqgv |
| ids.doi | https://doi.org/10.7910/dvn/evvqgv |
| ids.openalex | https://openalex.org/W4398311196 |
| fwci | |
| type | dataset |
| title | Replication Data for: Strategies of Chinese State Media on Twitter |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10557 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.8762000203132629 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3315 |
| topics[0].subfield.display_name | Communication |
| topics[0].display_name | Social Media and Politics |
| topics[1].id | https://openalex.org/T12785 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.8328999876976013 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3312 |
| topics[1].subfield.display_name | Sociology and Political Science |
| topics[1].display_name | Hong Kong and Taiwan Politics |
| topics[2].id | https://openalex.org/T10628 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.824400007724762 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3320 |
| topics[2].subfield.display_name | Political Science and International Relations |
| topics[2].display_name | China's Socioeconomic Reforms and Governance |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C12590798 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8542741537094116 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3933199 |
| concepts[0].display_name | Replication (statistics) |
| concepts[1].id | https://openalex.org/C48103436 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5642898082733154 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q599031 |
| concepts[1].display_name | State (computer science) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.44800904393196106 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C108827166 |
| concepts[3].level | 1 |
| concepts[3].score | 0.3604208827018738 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q175975 |
| concepts[3].display_name | Internet privacy |
| concepts[4].id | https://openalex.org/C86803240 |
| concepts[4].level | 0 |
| concepts[4].score | 0.20628520846366882 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[4].display_name | Biology |
| concepts[5].id | https://openalex.org/C199360897 |
| concepts[5].level | 1 |
| concepts[5].score | 0.05353400111198425 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[5].display_name | Programming language |
| concepts[6].id | https://openalex.org/C159047783 |
| concepts[6].level | 1 |
| concepts[6].score | 0.04807737469673157 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7215 |
| concepts[6].display_name | Virology |
| keywords[0].id | https://openalex.org/keywords/replication |
| keywords[0].score | 0.8542741537094116 |
| keywords[0].display_name | Replication (statistics) |
| keywords[1].id | https://openalex.org/keywords/state |
| keywords[1].score | 0.5642898082733154 |
| keywords[1].display_name | State (computer science) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.44800904393196106 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/internet-privacy |
| keywords[3].score | 0.3604208827018738 |
| keywords[3].display_name | Internet privacy |
| keywords[4].id | https://openalex.org/keywords/biology |
| keywords[4].score | 0.20628520846366882 |
| keywords[4].display_name | Biology |
| keywords[5].id | https://openalex.org/keywords/programming-language |
| keywords[5].score | 0.05353400111198425 |
| keywords[5].display_name | Programming language |
| keywords[6].id | https://openalex.org/keywords/virology |
| keywords[6].score | 0.04807737469673157 |
| keywords[6].display_name | Virology |
| language | en |
| locations[0].id | doi:10.7910/dvn/evvqgv |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4377196806 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Harvard Dataverse |
| locations[0].source.host_organization | https://openalex.org/I136199984 |
| locations[0].source.host_organization_name | Harvard University |
| locations[0].source.host_organization_lineage | https://openalex.org/I136199984 |
| locations[0].license | public-domain |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/public-domain |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.7910/dvn/evvqgv |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5100346621 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7991-9057 |
| authorships[0].author.display_name | Yingjie Fan |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I20089843 |
| authorships[0].affiliations[0].raw_affiliation_string | (Princeton University) |
| authorships[0].institutions[0].id | https://openalex.org/I20089843 |
| authorships[0].institutions[0].ror | https://ror.org/00hx57361 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I20089843 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Princeton University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yingjie Fan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | (Princeton University) |
| authorships[1].author.id | https://openalex.org/A5077795637 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-4818-0122 |
| authorships[1].author.display_name | Jennifer Pan |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I97018004 |
| authorships[1].affiliations[0].raw_affiliation_string | (Stanford University, Department of Communication) |
| authorships[1].institutions[0].id | https://openalex.org/I97018004 |
| authorships[1].institutions[0].ror | https://ror.org/00f54p054 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I97018004 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Stanford University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jennifer Pan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | (Stanford University, Department of Communication) |
| authorships[2].author.id | https://openalex.org/A5040584821 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4842-4705 |
| authorships[2].author.display_name | Jaymee Sheng |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Jaymee Sheng |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.7910/dvn/evvqgv |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Replication Data for: Strategies of Chinese State Media on Twitter |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10557 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.8762000203132629 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3315 |
| primary_topic.subfield.display_name | Communication |
| primary_topic.display_name | Social Media and Politics |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2748952813, https://openalex.org/W2390279801, https://openalex.org/W2358668433, https://openalex.org/W4396701345, https://openalex.org/W2376932109, https://openalex.org/W4205713785, https://openalex.org/W2001405890, https://openalex.org/W3016766501, https://openalex.org/W4398287560 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.7910/dvn/evvqgv |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4377196806 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Harvard Dataverse |
| best_oa_location.source.host_organization | https://openalex.org/I136199984 |
| best_oa_location.source.host_organization_name | Harvard University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I136199984 |
| best_oa_location.license | public-domain |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/public-domain |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.7910/dvn/evvqgv |
| primary_location.id | doi:10.7910/dvn/evvqgv |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4377196806 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Harvard Dataverse |
| primary_location.source.host_organization | https://openalex.org/I136199984 |
| primary_location.source.host_organization_name | Harvard University |
| primary_location.source.host_organization_lineage | https://openalex.org/I136199984 |
| primary_location.license | public-domain |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/public-domain |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.7910/dvn/evvqgv |
| publication_date | 2023-07-06 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 140, 164, 191 |
| abstract_inverted_index.In | 47 |
| abstract_inverted_index.We | 84 |
| abstract_inverted_index.as | 28, 68, 190 |
| abstract_inverted_index.by | 56 |
| abstract_inverted_index.do | 1 |
| abstract_inverted_index.in | 9, 12, 33, 99, 123, 133 |
| abstract_inverted_index.it | 126, 135, 138 |
| abstract_inverted_index.of | 15, 94, 144, 153, 178 |
| abstract_inverted_index.on | 62, 172 |
| abstract_inverted_index.to | 7, 24, 31, 64, 74, 108, 148, 181 |
| abstract_inverted_index.we | 50 |
| abstract_inverted_index.How | 0 |
| abstract_inverted_index.One | 114 |
| abstract_inverted_index.all | 87 |
| abstract_inverted_index.and | 79, 92, 105, 125, 150, 184 |
| abstract_inverted_index.era | 14 |
| abstract_inverted_index.for | 43 |
| abstract_inverted_index.its | 76, 154 |
| abstract_inverted_index.new | 41 |
| abstract_inverted_index.the | 13, 29, 69, 90, 129, 151 |
| abstract_inverted_index.use | 177 |
| abstract_inverted_index.was | 136, 156 |
| abstract_inverted_index.find | 85 |
| abstract_inverted_index.four | 57 |
| abstract_inverted_index.from | 128 |
| abstract_inverted_index.made | 120, 175 |
| abstract_inverted_index.more | 157 |
| abstract_inverted_index.none | 97, 106 |
| abstract_inverted_index.show | 161 |
| abstract_inverted_index.such | 27 |
| abstract_inverted_index.that | 21, 86, 134, 162 |
| abstract_inverted_index.this | 48 |
| abstract_inverted_index.tone | 152 |
| abstract_inverted_index.used | 55, 187 |
| abstract_inverted_index.were | 54 |
| abstract_inverted_index.what | 52 |
| abstract_inverted_index.when | 166 |
| abstract_inverted_index.with | 36, 103 |
| abstract_inverted_index.China | 116 |
| abstract_inverted_index.Party | 72 |
| abstract_inverted_index.These | 159 |
| abstract_inverted_index.gains | 122 |
| abstract_inverted_index.lower | 142 |
| abstract_inverted_index.media | 60, 81, 183, 189 |
| abstract_inverted_index.other | 130 |
| abstract_inverted_index.reach | 4, 65 |
| abstract_inverted_index.share | 143 |
| abstract_inverted_index.their | 111 |
| abstract_inverted_index.while | 96 |
| abstract_inverted_index.China, | 149 |
| abstract_inverted_index.Global | 117 |
| abstract_inverted_index.count. | 113 |
| abstract_inverted_index.during | 163 |
| abstract_inverted_index.engage | 8, 32 |
| abstract_inverted_index.expand | 75 |
| abstract_inverted_index.gained | 170 |
| abstract_inverted_index.media, | 26 |
| abstract_inverted_index.media? | 17 |
| abstract_inverted_index.online | 44 |
| abstract_inverted_index.paper, | 49 |
| abstract_inverted_index.period | 165 |
| abstract_inverted_index.public | 10, 45, 77 |
| abstract_inverted_index.social | 16, 25, 182, 188 |
| abstract_inverted_index.unique | 23, 180 |
| abstract_inverted_index.volume | 91 |
| abstract_inverted_index.worked | 73 |
| abstract_inverted_index.Chinese | 58, 70, 131, 167 |
| abstract_inverted_index.Twitter | 63 |
| abstract_inverted_index.ability | 30 |
| abstract_inverted_index.channel | 193 |
| abstract_inverted_index.content | 95 |
| abstract_inverted_index.differs | 127 |
| abstract_inverted_index.engaged | 98 |
| abstract_inverted_index.examine | 51 |
| abstract_inverted_index.foreign | 5, 66 |
| abstract_inverted_index.inflate | 110 |
| abstract_inverted_index.instead | 185 |
| abstract_inverted_index.limited | 176 |
| abstract_inverted_index.outlet, | 115 |
| abstract_inverted_index.outlets | 61, 88, 132, 174 |
| abstract_inverted_index.provide | 38 |
| abstract_inverted_index.publics | 6, 67 |
| abstract_inverted_index.results | 160 |
| abstract_inverted_index.two-way | 34, 101 |
| abstract_inverted_index.Network, | 119 |
| abstract_inverted_index.Previous | 18 |
| abstract_inverted_index.Twitter, | 173 |
| abstract_inverted_index.appeared | 107 |
| abstract_inverted_index.efforts. | 83 |
| abstract_inverted_index.features | 22, 179 |
| abstract_inverted_index.follower | 112 |
| abstract_inverted_index.outreach | 82 |
| abstract_inverted_index.outsized | 121 |
| abstract_inverted_index.research | 19 |
| abstract_inverted_index.suggests | 20 |
| abstract_inverted_index.Communist | 71 |
| abstract_inverted_index.broadcast | 192 |
| abstract_inverted_index.diplomacy | 11, 78 |
| abstract_inverted_index.diversity | 93 |
| abstract_inverted_index.followers | 171 |
| abstract_inverted_index.increased | 89 |
| abstract_inverted_index.negative. | 158 |
| abstract_inverted_index.primarily | 186 |
| abstract_inverted_index.reporting | 155 |
| abstract_inverted_index.Television | 118 |
| abstract_inverted_index.audiences, | 37, 104 |
| abstract_inverted_index.diplomacy. | 46 |
| abstract_inverted_index.narratives | 146 |
| abstract_inverted_index.pertaining | 147 |
| abstract_inverted_index.rebranded, | 137 |
| abstract_inverted_index.relatively | 141 |
| abstract_inverted_index.strategies | 53 |
| abstract_inverted_index.artificially | 109 |
| abstract_inverted_index.broadcasters | 3, 40, 169 |
| abstract_inverted_index.disseminated | 139 |
| abstract_inverted_index.interactive, | 100 |
| abstract_inverted_index.communication | 35, 102 |
| abstract_inverted_index.followership, | 124 |
| abstract_inverted_index.international | 80 |
| abstract_inverted_index.opportunities | 42 |
| abstract_inverted_index.state-controlled | 2, 39, 59, 168 |
| abstract_inverted_index.government-mandated | 145 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |