Replication For: Equation Balance in Time Series Analysis: Lessons Learned and Lessons Needed Article Swipe
The papers in this symposium use Monte Carlo simulations to demonstrate the consequences of estimating time series models with variables that are of different orders of integration. In this summary, I do the following: very briefly outline what we learn from the papers; identify an apparent contradiction that might increase, rather than decrease, confusion around the concept of a balanced time series model; suggest a resolution; and identify a few areas of research that could further increase our understanding of how variables with different dynamics might be combined. In doing these things, I suggest there is still a lack of clarity around how a research practitioner demonstrates balance, and demonstrates what Pickup and Kellstedt (2020) call I(0) balance.
Related Topics
- Type
- dataset
- Language
- en
- Landing Page
- https://doi.org/10.7910/dvn/iitph8
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4398560746
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4398560746Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.7910/dvn/iitph8Digital Object Identifier
- Title
-
Replication For: Equation Balance in Time Series Analysis: Lessons Learned and Lessons NeededWork title
- Type
-
datasetOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-14Full publication date if available
- Authors
-
Mark PickupList of authors in order
- Landing page
-
https://doi.org/10.7910/dvn/iitph8Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.7910/dvn/iitph8Direct OA link when available
- Concepts
-
Replication (statistics), Balance (ability), Series (stratigraphy), Computer science, Time series, Operations research, Mathematics, Statistics, Biology, Medicine, Physical medicine and rehabilitation, Machine learning, PaleontologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4398560746 |
|---|---|
| doi | https://doi.org/10.7910/dvn/iitph8 |
| ids.doi | https://doi.org/10.7910/dvn/iitph8 |
| ids.openalex | https://openalex.org/W4398560746 |
| fwci | |
| type | dataset |
| title | Replication For: Equation Balance in Time Series Analysis: Lessons Learned and Lessons Needed |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11270 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.34850001335144043 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2002 |
| topics[0].subfield.display_name | Economics and Econometrics |
| topics[0].display_name | Complex Systems and Time Series Analysis |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C12590798 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7919994592666626 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3933199 |
| concepts[0].display_name | Replication (statistics) |
| concepts[1].id | https://openalex.org/C168031717 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6139931082725525 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1530280 |
| concepts[1].display_name | Balance (ability) |
| concepts[2].id | https://openalex.org/C143724316 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5947089195251465 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q312468 |
| concepts[2].display_name | Series (stratigraphy) |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5013034343719482 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C151406439 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48757022619247437 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q186588 |
| concepts[4].display_name | Time series |
| concepts[5].id | https://openalex.org/C42475967 |
| concepts[5].level | 1 |
| concepts[5].score | 0.32200485467910767 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[5].display_name | Operations research |
| concepts[6].id | https://openalex.org/C33923547 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2894982397556305 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[6].display_name | Mathematics |
| concepts[7].id | https://openalex.org/C105795698 |
| concepts[7].level | 1 |
| concepts[7].score | 0.17792841792106628 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[7].display_name | Statistics |
| concepts[8].id | https://openalex.org/C86803240 |
| concepts[8].level | 0 |
| concepts[8].score | 0.15859895944595337 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[8].display_name | Biology |
| concepts[9].id | https://openalex.org/C71924100 |
| concepts[9].level | 0 |
| concepts[9].score | 0.12397569417953491 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[9].display_name | Medicine |
| concepts[10].id | https://openalex.org/C99508421 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0824461579322815 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2678675 |
| concepts[10].display_name | Physical medicine and rehabilitation |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0782521665096283 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C151730666 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7205 |
| concepts[12].display_name | Paleontology |
| keywords[0].id | https://openalex.org/keywords/replication |
| keywords[0].score | 0.7919994592666626 |
| keywords[0].display_name | Replication (statistics) |
| keywords[1].id | https://openalex.org/keywords/balance |
| keywords[1].score | 0.6139931082725525 |
| keywords[1].display_name | Balance (ability) |
| keywords[2].id | https://openalex.org/keywords/series |
| keywords[2].score | 0.5947089195251465 |
| keywords[2].display_name | Series (stratigraphy) |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5013034343719482 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/time-series |
| keywords[4].score | 0.48757022619247437 |
| keywords[4].display_name | Time series |
| keywords[5].id | https://openalex.org/keywords/operations-research |
| keywords[5].score | 0.32200485467910767 |
| keywords[5].display_name | Operations research |
| keywords[6].id | https://openalex.org/keywords/mathematics |
| keywords[6].score | 0.2894982397556305 |
| keywords[6].display_name | Mathematics |
| keywords[7].id | https://openalex.org/keywords/statistics |
| keywords[7].score | 0.17792841792106628 |
| keywords[7].display_name | Statistics |
| keywords[8].id | https://openalex.org/keywords/biology |
| keywords[8].score | 0.15859895944595337 |
| keywords[8].display_name | Biology |
| keywords[9].id | https://openalex.org/keywords/medicine |
| keywords[9].score | 0.12397569417953491 |
| keywords[9].display_name | Medicine |
| keywords[10].id | https://openalex.org/keywords/physical-medicine-and-rehabilitation |
| keywords[10].score | 0.0824461579322815 |
| keywords[10].display_name | Physical medicine and rehabilitation |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.0782521665096283 |
| keywords[11].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.7910/dvn/iitph8 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4377196806 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Harvard Dataverse |
| locations[0].source.host_organization | https://openalex.org/I136199984 |
| locations[0].source.host_organization_name | Harvard University |
| locations[0].source.host_organization_lineage | https://openalex.org/I136199984 |
| locations[0].license | public-domain |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | https://openalex.org/licenses/public-domain |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.7910/dvn/iitph8 |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5057601388 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0539-1138 |
| authorships[0].author.display_name | Mark Pickup |
| authorships[0].countries | CA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I18014758 |
| authorships[0].affiliations[0].raw_affiliation_string | (Simon Fraser University) |
| authorships[0].institutions[0].id | https://openalex.org/I18014758 |
| authorships[0].institutions[0].ror | https://ror.org/0213rcc28 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I18014758 |
| authorships[0].institutions[0].country_code | CA |
| authorships[0].institutions[0].display_name | Simon Fraser University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Mark Pickup |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | (Simon Fraser University) |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.7910/dvn/iitph8 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Replication For: Equation Balance in Time Series Analysis: Lessons Learned and Lessons Needed |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11270 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.34850001335144043 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2002 |
| primary_topic.subfield.display_name | Economics and Econometrics |
| primary_topic.display_name | Complex Systems and Time Series Analysis |
| related_works | https://openalex.org/W4205713785, https://openalex.org/W3016766501, https://openalex.org/W4398287560, https://openalex.org/W2901033488, https://openalex.org/W4398556994, https://openalex.org/W4398472861, https://openalex.org/W4398279827, https://openalex.org/W2622688551, https://openalex.org/W1550175370, https://openalex.org/W1990205660 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.7910/dvn/iitph8 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4377196806 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Harvard Dataverse |
| best_oa_location.source.host_organization | https://openalex.org/I136199984 |
| best_oa_location.source.host_organization_name | Harvard University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I136199984 |
| best_oa_location.license | public-domain |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | https://openalex.org/licenses/public-domain |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.7910/dvn/iitph8 |
| primary_location.id | doi:10.7910/dvn/iitph8 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4377196806 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Harvard Dataverse |
| primary_location.source.host_organization | https://openalex.org/I136199984 |
| primary_location.source.host_organization_name | Harvard University |
| primary_location.source.host_organization_lineage | https://openalex.org/I136199984 |
| primary_location.license | public-domain |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | https://openalex.org/licenses/public-domain |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.7910/dvn/iitph8 |
| publication_date | 2021-12-14 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.I | 30, 92 |
| abstract_inverted_index.a | 58, 64, 68, 97, 103 |
| abstract_inverted_index.In | 27, 88 |
| abstract_inverted_index.an | 44 |
| abstract_inverted_index.be | 86 |
| abstract_inverted_index.do | 31 |
| abstract_inverted_index.in | 2 |
| abstract_inverted_index.is | 95 |
| abstract_inverted_index.of | 13, 22, 25, 57, 71, 79, 99 |
| abstract_inverted_index.to | 9 |
| abstract_inverted_index.we | 38 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 66, 108, 112 |
| abstract_inverted_index.are | 21 |
| abstract_inverted_index.few | 69 |
| abstract_inverted_index.how | 80, 102 |
| abstract_inverted_index.our | 77 |
| abstract_inverted_index.the | 11, 32, 41, 55 |
| abstract_inverted_index.use | 5 |
| abstract_inverted_index.I(0) | 116 |
| abstract_inverted_index.call | 115 |
| abstract_inverted_index.from | 40 |
| abstract_inverted_index.lack | 98 |
| abstract_inverted_index.than | 51 |
| abstract_inverted_index.that | 20, 47, 73 |
| abstract_inverted_index.this | 3, 28 |
| abstract_inverted_index.time | 15, 60 |
| abstract_inverted_index.very | 34 |
| abstract_inverted_index.what | 37, 110 |
| abstract_inverted_index.with | 18, 82 |
| abstract_inverted_index.Carlo | 7 |
| abstract_inverted_index.Monte | 6 |
| abstract_inverted_index.areas | 70 |
| abstract_inverted_index.could | 74 |
| abstract_inverted_index.doing | 89 |
| abstract_inverted_index.learn | 39 |
| abstract_inverted_index.might | 48, 85 |
| abstract_inverted_index.still | 96 |
| abstract_inverted_index.there | 94 |
| abstract_inverted_index.these | 90 |
| abstract_inverted_index.(2020) | 114 |
| abstract_inverted_index.Pickup | 111 |
| abstract_inverted_index.around | 54, 101 |
| abstract_inverted_index.model; | 62 |
| abstract_inverted_index.models | 17 |
| abstract_inverted_index.orders | 24 |
| abstract_inverted_index.papers | 1 |
| abstract_inverted_index.rather | 50 |
| abstract_inverted_index.series | 16, 61 |
| abstract_inverted_index.briefly | 35 |
| abstract_inverted_index.clarity | 100 |
| abstract_inverted_index.concept | 56 |
| abstract_inverted_index.further | 75 |
| abstract_inverted_index.outline | 36 |
| abstract_inverted_index.papers; | 42 |
| abstract_inverted_index.suggest | 63, 93 |
| abstract_inverted_index.things, | 91 |
| abstract_inverted_index.apparent | 45 |
| abstract_inverted_index.balance, | 107 |
| abstract_inverted_index.balance. | 117 |
| abstract_inverted_index.balanced | 59 |
| abstract_inverted_index.dynamics | 84 |
| abstract_inverted_index.identify | 43, 67 |
| abstract_inverted_index.increase | 76 |
| abstract_inverted_index.research | 72, 104 |
| abstract_inverted_index.summary, | 29 |
| abstract_inverted_index.Kellstedt | 113 |
| abstract_inverted_index.combined. | 87 |
| abstract_inverted_index.confusion | 53 |
| abstract_inverted_index.decrease, | 52 |
| abstract_inverted_index.different | 23, 83 |
| abstract_inverted_index.increase, | 49 |
| abstract_inverted_index.symposium | 4 |
| abstract_inverted_index.variables | 19, 81 |
| abstract_inverted_index.estimating | 14 |
| abstract_inverted_index.following: | 33 |
| abstract_inverted_index.demonstrate | 10 |
| abstract_inverted_index.resolution; | 65 |
| abstract_inverted_index.simulations | 8 |
| abstract_inverted_index.consequences | 12 |
| abstract_inverted_index.demonstrates | 106, 109 |
| abstract_inverted_index.integration. | 26 |
| abstract_inverted_index.practitioner | 105 |
| abstract_inverted_index.contradiction | 46 |
| abstract_inverted_index.understanding | 78 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5057601388 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 1 |
| corresponding_institution_ids | https://openalex.org/I18014758 |
| citation_normalized_percentile |