Representation Ensembling for Synergistic Lifelong Learning with Quasilinear Complexity Article Swipe
Jayanta Dey
,
Joshua T Vogelstein
,
Hayden S. Helm
,
Will LeVine
,
Ronak Mehta
,
Ali Geisa
,
Haoyin Xu
,
Gido M. van de Ven
,
Emily Chang
,
Chenyu Gao
,
Weiwei Yang
,
Bryan Tower
,
Jonathan Larson
,
Christopher White
,
Carey E. Priebe
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-1244827/v1
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.21203/rs.3.rs-1244827/v1
Related Topics
Concepts
Forgetting
Computer science
Task (project management)
Machine learning
Lifelong learning
Artificial intelligence
Variety (cybernetics)
Representation (politics)
Transfer of learning
Contrast (vision)
Key (lock)
Cognitive psychology
Politics
Pedagogy
Economics
Computer security
Management
Law
Psychology
Political science
Metadata
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.21203/rs.3.rs-1244827/v1
- https://www.researchsquare.com/article/rs-1244827/latest.pdf
- OA Status
- gold
- References
- 62
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4205331298
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4205331298Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.21203/rs.3.rs-1244827/v1Digital Object Identifier
- Title
-
Representation Ensembling for Synergistic Lifelong Learning with Quasilinear ComplexityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-20Full publication date if available
- Authors
-
Jayanta Dey, Joshua T Vogelstein, Hayden S. Helm, Will LeVine, Ronak Mehta, Ali Geisa, Haoyin Xu, Gido M. van de Ven, Emily Chang, Chenyu Gao, Weiwei Yang, Bryan Tower, Jonathan Larson, Christopher White, Carey E. PriebeList of authors in order
- Landing page
-
https://doi.org/10.21203/rs.3.rs-1244827/v1Publisher landing page
- PDF URL
-
https://www.researchsquare.com/article/rs-1244827/latest.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.researchsquare.com/article/rs-1244827/latest.pdfDirect OA link when available
- Concepts
-
Forgetting, Computer science, Task (project management), Machine learning, Lifelong learning, Artificial intelligence, Variety (cybernetics), Representation (politics), Transfer of learning, Contrast (vision), Key (lock), Cognitive psychology, Politics, Pedagogy, Economics, Computer security, Management, Law, Psychology, Political scienceTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4205331298 |
|---|---|
| doi | https://doi.org/10.21203/rs.3.rs-1244827/v1 |
| ids.doi | https://doi.org/10.21203/rs.3.rs-1244827/v1 |
| ids.openalex | https://openalex.org/W4205331298 |
| fwci | 0.0 |
| type | preprint |
| title | Representation Ensembling for Synergistic Lifelong Learning with Quasilinear Complexity |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11307 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.995199978351593 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Domain Adaptation and Few-Shot Learning |
| topics[1].id | https://openalex.org/T11775 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.906000018119812 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | COVID-19 diagnosis using AI |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C7149132 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9094105958938599 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1377840 |
| concepts[0].display_name | Forgetting |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7691271305084229 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C2780451532 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6921917200088501 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[2].display_name | Task (project management) |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.616616427898407 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C108771440 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6055707931518555 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q368475 |
| concepts[4].display_name | Lifelong learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5929960012435913 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C136197465 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5866398811340332 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1729295 |
| concepts[6].display_name | Variety (cybernetics) |
| concepts[7].id | https://openalex.org/C2776359362 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5853860974311829 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[7].display_name | Representation (politics) |
| concepts[8].id | https://openalex.org/C150899416 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5432135462760925 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[8].display_name | Transfer of learning |
| concepts[9].id | https://openalex.org/C2776502983 |
| concepts[9].level | 2 |
| concepts[9].score | 0.5049379467964172 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q690182 |
| concepts[9].display_name | Contrast (vision) |
| concepts[10].id | https://openalex.org/C26517878 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4282941222190857 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q228039 |
| concepts[10].display_name | Key (lock) |
| concepts[11].id | https://openalex.org/C180747234 |
| concepts[11].level | 1 |
| concepts[11].score | 0.11546781659126282 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q23373 |
| concepts[11].display_name | Cognitive psychology |
| concepts[12].id | https://openalex.org/C94625758 |
| concepts[12].level | 2 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[12].display_name | Politics |
| concepts[13].id | https://openalex.org/C19417346 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7922 |
| concepts[13].display_name | Pedagogy |
| concepts[14].id | https://openalex.org/C162324750 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[14].display_name | Economics |
| concepts[15].id | https://openalex.org/C38652104 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[15].display_name | Computer security |
| concepts[16].id | https://openalex.org/C187736073 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[16].display_name | Management |
| concepts[17].id | https://openalex.org/C199539241 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[17].display_name | Law |
| concepts[18].id | https://openalex.org/C15744967 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[18].display_name | Psychology |
| concepts[19].id | https://openalex.org/C17744445 |
| concepts[19].level | 0 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[19].display_name | Political science |
| keywords[0].id | https://openalex.org/keywords/forgetting |
| keywords[0].score | 0.9094105958938599 |
| keywords[0].display_name | Forgetting |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7691271305084229 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/task |
| keywords[2].score | 0.6921917200088501 |
| keywords[2].display_name | Task (project management) |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.616616427898407 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/lifelong-learning |
| keywords[4].score | 0.6055707931518555 |
| keywords[4].display_name | Lifelong learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5929960012435913 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/variety |
| keywords[6].score | 0.5866398811340332 |
| keywords[6].display_name | Variety (cybernetics) |
| keywords[7].id | https://openalex.org/keywords/representation |
| keywords[7].score | 0.5853860974311829 |
| keywords[7].display_name | Representation (politics) |
| keywords[8].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[8].score | 0.5432135462760925 |
| keywords[8].display_name | Transfer of learning |
| keywords[9].id | https://openalex.org/keywords/contrast |
| keywords[9].score | 0.5049379467964172 |
| keywords[9].display_name | Contrast (vision) |
| keywords[10].id | https://openalex.org/keywords/key |
| keywords[10].score | 0.4282941222190857 |
| keywords[10].display_name | Key (lock) |
| keywords[11].id | https://openalex.org/keywords/cognitive-psychology |
| keywords[11].score | 0.11546781659126282 |
| keywords[11].display_name | Cognitive psychology |
| language | en |
| locations[0].id | doi:10.21203/rs.3.rs-1244827/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.researchsquare.com/article/rs-1244827/latest.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.21203/rs.3.rs-1244827/v1 |
| locations[1].id | pmh:oai:lirias2repo.kuleuven.be:20.500.12942/709914 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401954 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Lirias (KU Leuven) |
| locations[1].source.host_organization | https://openalex.org/I99464096 |
| locations[1].source.host_organization_name | KU Leuven |
| locations[1].source.host_organization_lineage | https://openalex.org/I99464096 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | acceptedVersion |
| locations[1].raw_type | info:eu-repo/semantics/other |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | True |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://lirias.kuleuven.be/handle/20.500.12942/709914 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101499187 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6713-7402 |
| authorships[0].author.display_name | Jayanta Dey |
| authorships[0].affiliations[0].raw_affiliation_string | Johns Hopkins School of Medicine |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jayanta Dey |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Johns Hopkins School of Medicine |
| authorships[1].author.id | https://openalex.org/A5065441417 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2487-6237 |
| authorships[1].author.display_name | Joshua T Vogelstein |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[1].affiliations[0].raw_affiliation_string | Johns Hopkins University (JHU), |
| authorships[1].institutions[0].id | https://openalex.org/I145311948 |
| authorships[1].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Johns Hopkins University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Joshua Vogelstein |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Johns Hopkins University (JHU), |
| authorships[2].author.id | https://openalex.org/A5091316872 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9475-8100 |
| authorships[2].author.display_name | Hayden S. Helm |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[2].affiliations[0].raw_affiliation_string | Johns Hopkins University (JHU), |
| authorships[2].institutions[0].id | https://openalex.org/I145311948 |
| authorships[2].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Johns Hopkins University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hayden Helm |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Johns Hopkins University (JHU), |
| authorships[3].author.id | https://openalex.org/A5074030713 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Will LeVine |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[3].affiliations[0].raw_affiliation_string | Johns Hopkins University (JHU), |
| authorships[3].institutions[0].id | https://openalex.org/I145311948 |
| authorships[3].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | Johns Hopkins University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Will Levine |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Johns Hopkins University (JHU), |
| authorships[4].author.id | https://openalex.org/A5001083519 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Ronak Mehta |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[4].affiliations[0].raw_affiliation_string | Johns Hopkins University (JHU), |
| authorships[4].institutions[0].id | https://openalex.org/I145311948 |
| authorships[4].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Johns Hopkins University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Ronak Mehta |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Johns Hopkins University (JHU), |
| authorships[5].author.id | https://openalex.org/A5055348866 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Ali Geisa |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[5].affiliations[0].raw_affiliation_string | Johns Hopkins University (JHU), |
| authorships[5].institutions[0].id | https://openalex.org/I145311948 |
| authorships[5].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Johns Hopkins University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ali Geisa |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Johns Hopkins University (JHU), |
| authorships[6].author.id | https://openalex.org/A5089675192 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-8235-4950 |
| authorships[6].author.display_name | Haoyin Xu |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[6].affiliations[0].raw_affiliation_string | Johns Hopkins University (JHU), |
| authorships[6].institutions[0].id | https://openalex.org/I145311948 |
| authorships[6].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Johns Hopkins University |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Haoyin Xu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Johns Hopkins University (JHU), |
| authorships[7].author.id | https://openalex.org/A5049810748 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-5239-5660 |
| authorships[7].author.display_name | Gido M. van de Ven |
| authorships[7].countries | GB, US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I181547552 |
| authorships[7].affiliations[0].raw_affiliation_string | Baylor College of Medicine, |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I241749 |
| authorships[7].affiliations[1].raw_affiliation_string | University of Cambridge |
| authorships[7].institutions[0].id | https://openalex.org/I241749 |
| authorships[7].institutions[0].ror | https://ror.org/013meh722 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I241749 |
| authorships[7].institutions[0].country_code | GB |
| authorships[7].institutions[0].display_name | University of Cambridge |
| authorships[7].institutions[1].id | https://openalex.org/I181547552 |
| authorships[7].institutions[1].ror | https://ror.org/02pttbw34 |
| authorships[7].institutions[1].type | education |
| authorships[7].institutions[1].lineage | https://openalex.org/I181547552, https://openalex.org/I2801539370 |
| authorships[7].institutions[1].country_code | US |
| authorships[7].institutions[1].display_name | Baylor College of Medicine |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Gido van de Ven |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Baylor College of Medicine,, University of Cambridge |
| authorships[8].author.id | https://openalex.org/A5089599249 |
| authorships[8].author.orcid | |
| authorships[8].author.display_name | Emily Chang |
| authorships[8].countries | US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[8].affiliations[0].raw_affiliation_string | Johns Hopkins University (JHU), |
| authorships[8].institutions[0].id | https://openalex.org/I145311948 |
| authorships[8].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[8].institutions[0].country_code | US |
| authorships[8].institutions[0].display_name | Johns Hopkins University |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Emily Chang |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Johns Hopkins University (JHU), |
| authorships[9].author.id | https://openalex.org/A5023405613 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-2098-3035 |
| authorships[9].author.display_name | Chenyu Gao |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[9].affiliations[0].raw_affiliation_string | Johns Hopkins University (JHU), |
| authorships[9].institutions[0].id | https://openalex.org/I145311948 |
| authorships[9].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | Johns Hopkins University |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Chenyu Gao |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Johns Hopkins University (JHU), |
| authorships[10].author.id | https://openalex.org/A5102743275 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-0377-2626 |
| authorships[10].author.display_name | Weiwei Yang |
| authorships[10].countries | GB |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I4210164937 |
| authorships[10].affiliations[0].raw_affiliation_string | Microsoft Research, |
| authorships[10].institutions[0].id | https://openalex.org/I4210164937 |
| authorships[10].institutions[0].ror | https://ror.org/05k87vq12 |
| authorships[10].institutions[0].type | company |
| authorships[10].institutions[0].lineage | https://openalex.org/I1290206253, https://openalex.org/I4210164937 |
| authorships[10].institutions[0].country_code | GB |
| authorships[10].institutions[0].display_name | Microsoft Research (United Kingdom) |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Weiwei Yang |
| authorships[10].is_corresponding | False |
| authorships[10].raw_affiliation_strings | Microsoft Research, |
| authorships[11].author.id | https://openalex.org/A5102836934 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-3659-6988 |
| authorships[11].author.display_name | Bryan Tower |
| authorships[11].countries | GB |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I4210164937 |
| authorships[11].affiliations[0].raw_affiliation_string | Microsoft Research, |
| authorships[11].institutions[0].id | https://openalex.org/I4210164937 |
| authorships[11].institutions[0].ror | https://ror.org/05k87vq12 |
| authorships[11].institutions[0].type | company |
| authorships[11].institutions[0].lineage | https://openalex.org/I1290206253, https://openalex.org/I4210164937 |
| authorships[11].institutions[0].country_code | GB |
| authorships[11].institutions[0].display_name | Microsoft Research (United Kingdom) |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Bryan Tower |
| authorships[11].is_corresponding | False |
| authorships[11].raw_affiliation_strings | Microsoft Research, |
| authorships[12].author.id | https://openalex.org/A5056572216 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-8865-9306 |
| authorships[12].author.display_name | Jonathan Larson |
| authorships[12].countries | GB |
| authorships[12].affiliations[0].institution_ids | https://openalex.org/I4210164937 |
| authorships[12].affiliations[0].raw_affiliation_string | Microsoft Research, |
| authorships[12].institutions[0].id | https://openalex.org/I4210164937 |
| authorships[12].institutions[0].ror | https://ror.org/05k87vq12 |
| authorships[12].institutions[0].type | company |
| authorships[12].institutions[0].lineage | https://openalex.org/I1290206253, https://openalex.org/I4210164937 |
| authorships[12].institutions[0].country_code | GB |
| authorships[12].institutions[0].display_name | Microsoft Research (United Kingdom) |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Jonathan Larson |
| authorships[12].is_corresponding | False |
| authorships[12].raw_affiliation_strings | Microsoft Research, |
| authorships[13].author.id | https://openalex.org/A5067262667 |
| authorships[13].author.orcid | |
| authorships[13].author.display_name | Christopher White |
| authorships[13].countries | GB |
| authorships[13].affiliations[0].institution_ids | https://openalex.org/I4210164937 |
| authorships[13].affiliations[0].raw_affiliation_string | Microsoft Research, |
| authorships[13].institutions[0].id | https://openalex.org/I4210164937 |
| authorships[13].institutions[0].ror | https://ror.org/05k87vq12 |
| authorships[13].institutions[0].type | company |
| authorships[13].institutions[0].lineage | https://openalex.org/I1290206253, https://openalex.org/I4210164937 |
| authorships[13].institutions[0].country_code | GB |
| authorships[13].institutions[0].display_name | Microsoft Research (United Kingdom) |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Christopher White |
| authorships[13].is_corresponding | False |
| authorships[13].raw_affiliation_strings | Microsoft Research, |
| authorships[14].author.id | https://openalex.org/A5031834098 |
| authorships[14].author.orcid | |
| authorships[14].author.display_name | Carey E. Priebe |
| authorships[14].countries | US |
| authorships[14].affiliations[0].institution_ids | https://openalex.org/I145311948 |
| authorships[14].affiliations[0].raw_affiliation_string | Johns Hopkins University (JHU), |
| authorships[14].institutions[0].id | https://openalex.org/I145311948 |
| authorships[14].institutions[0].ror | https://ror.org/00za53h95 |
| authorships[14].institutions[0].type | education |
| authorships[14].institutions[0].lineage | https://openalex.org/I145311948 |
| authorships[14].institutions[0].country_code | US |
| authorships[14].institutions[0].display_name | Johns Hopkins University |
| authorships[14].author_position | last |
| authorships[14].raw_author_name | Carey Priebe |
| authorships[14].is_corresponding | False |
| authorships[14].raw_affiliation_strings | Johns Hopkins University (JHU), |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.researchsquare.com/article/rs-1244827/latest.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Representation Ensembling for Synergistic Lifelong Learning with Quasilinear Complexity |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11307 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.995199978351593 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Domain Adaptation and Few-Shot Learning |
| related_works | https://openalex.org/W4289718052, https://openalex.org/W2164121020, https://openalex.org/W2145559838, https://openalex.org/W3116498279, https://openalex.org/W4287549553, https://openalex.org/W3183027292, https://openalex.org/W2364105709, https://openalex.org/W2974871044, https://openalex.org/W4310285384, https://openalex.org/W2794885965 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.21203/rs.3.rs-1244827/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.researchsquare.com/article/rs-1244827/latest.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-1244827/v1 |
| primary_location.id | doi:10.21203/rs.3.rs-1244827/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.researchsquare.com/article/rs-1244827/latest.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.21203/rs.3.rs-1244827/v1 |
| publication_date | 2022-01-20 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2431247850, https://openalex.org/W2029538739, https://openalex.org/W1682403713, https://openalex.org/W2047057213, https://openalex.org/W2560647685, https://openalex.org/W2949268663, https://openalex.org/W1519626139, https://openalex.org/W2965475058, https://openalex.org/W2788388592, https://openalex.org/W3112702808, https://openalex.org/W2144161366, https://openalex.org/W2295598076, https://openalex.org/W2618767506, https://openalex.org/W3048941751, https://openalex.org/W2902456977, https://openalex.org/W2939137134, https://openalex.org/W2734314755, https://openalex.org/W2157331557, https://openalex.org/W2896457183, https://openalex.org/W2120240539, https://openalex.org/W128984794, https://openalex.org/W6676959241, https://openalex.org/W6740738895, https://openalex.org/W2940130395, https://openalex.org/W1673923490, https://openalex.org/W2768412495, https://openalex.org/W2978727393, https://openalex.org/W2744654301, https://openalex.org/W2107665951, https://openalex.org/W2971715690, https://openalex.org/W1886762442, https://openalex.org/W4319988532, https://openalex.org/W4238893454, https://openalex.org/W3021931813, https://openalex.org/W2963588172, https://openalex.org/W3118608800, https://openalex.org/W3038692287, https://openalex.org/W3015259080, https://openalex.org/W2116522068, https://openalex.org/W1969733464, https://openalex.org/W2044442377, https://openalex.org/W2116563254, https://openalex.org/W2962727190, https://openalex.org/W2954387907, https://openalex.org/W2917286209, https://openalex.org/W2478136907, https://openalex.org/W2804175194, https://openalex.org/W2902417425, https://openalex.org/W2963559848, https://openalex.org/W4238284510, https://openalex.org/W2059507684, https://openalex.org/W4394804224, https://openalex.org/W4301163820, https://openalex.org/W2995589713, https://openalex.org/W2963540014, https://openalex.org/W4256364787, https://openalex.org/W1522301498, https://openalex.org/W2109426455, https://openalex.org/W4295883599, https://openalex.org/W2133013156, https://openalex.org/W2330820318, https://openalex.org/W4385245566 |
| referenced_works_count | 62 |
| abstract_inverted_index | |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 15 |
| citation_normalized_percentile.value | 0.00736788 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |