Representation Learning and Similarity of Legal Judgements using Citation Networks Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.5121/csit.2021.112302
India and many other countries like UK, Australia, Canada follow the ‘common law system’ which gives substantial importance to prior related cases in determining the outcome of the current case. Better similarity methods can help in finding earlier similar cases, which can help lawyers searching for precedents. Prior approaches in computing similarity of legal judgements use a basic representation which is either abag-of-words or dense embedding which is learned by only using the words present in the document. They, however, either neglect or do not emphasize the vital ‘legal’ information in the judgements, e.g. citations to prior cases, act and article numbers or names etc. In this paper, we propose a novel approach to learn the embeddings of legal documents using the citationnetwork of documents. Experimental results demonstrate that the learned embedding is at par with the state-of-the-art methods for document similarity on a standard legal dataset.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.5121/csit.2021.112302
- https://doi.org/10.5121/csit.2021.112302
- OA Status
- hybrid
- References
- 12
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4200126321
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4200126321Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5121/csit.2021.112302Digital Object Identifier
- Title
-
Representation Learning and Similarity of Legal Judgements using Citation NetworksWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-23Full publication date if available
- Authors
-
Harshit Jain, Naveen PundirList of authors in order
- Landing page
-
https://doi.org/10.5121/csit.2021.112302Publisher landing page
- PDF URL
-
https://doi.org/10.5121/csit.2021.112302Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.5121/csit.2021.112302Direct OA link when available
- Concepts
-
Similarity (geometry), Representation (politics), Computer science, Embedding, Citation, Neglect, Information retrieval, Artificial intelligence, Natural language processing, Psychology, Political science, Law, Image (mathematics), World Wide Web, Psychiatry, PoliticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
12Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4200126321 |
|---|---|
| doi | https://doi.org/10.5121/csit.2021.112302 |
| ids.doi | https://doi.org/10.5121/csit.2021.112302 |
| ids.openalex | https://openalex.org/W4200126321 |
| fwci | 0.0 |
| type | article |
| title | Representation Learning and Similarity of Legal Judgements using Citation Networks |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 30 |
| biblio.first_page | 23 |
| topics[0].id | https://openalex.org/T13643 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9988999962806702 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3320 |
| topics[0].subfield.display_name | Political Science and International Relations |
| topics[0].display_name | Artificial Intelligence in Law |
| topics[1].id | https://openalex.org/T10028 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9778000116348267 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Topic Modeling |
| topics[2].id | https://openalex.org/T10181 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.930899977684021 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Natural Language Processing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C103278499 |
| concepts[0].level | 3 |
| concepts[0].score | 0.8342069387435913 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[0].display_name | Similarity (geometry) |
| concepts[1].id | https://openalex.org/C2776359362 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6736176609992981 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[1].display_name | Representation (politics) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6356766223907471 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C41608201 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6178045272827148 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[3].display_name | Embedding |
| concepts[4].id | https://openalex.org/C2778805511 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5917909741401672 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1713 |
| concepts[4].display_name | Citation |
| concepts[5].id | https://openalex.org/C2776289891 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5605204701423645 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1931511 |
| concepts[5].display_name | Neglect |
| concepts[6].id | https://openalex.org/C23123220 |
| concepts[6].level | 1 |
| concepts[6].score | 0.5483052730560303 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q816826 |
| concepts[6].display_name | Information retrieval |
| concepts[7].id | https://openalex.org/C154945302 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4664663076400757 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[7].display_name | Artificial intelligence |
| concepts[8].id | https://openalex.org/C204321447 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3927159309387207 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q30642 |
| concepts[8].display_name | Natural language processing |
| concepts[9].id | https://openalex.org/C15744967 |
| concepts[9].level | 0 |
| concepts[9].score | 0.19528919458389282 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[9].display_name | Psychology |
| concepts[10].id | https://openalex.org/C17744445 |
| concepts[10].level | 0 |
| concepts[10].score | 0.15990003943443298 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[10].display_name | Political science |
| concepts[11].id | https://openalex.org/C199539241 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1341482400894165 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[11].display_name | Law |
| concepts[12].id | https://openalex.org/C115961682 |
| concepts[12].level | 2 |
| concepts[12].score | 0.1020246148109436 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[12].display_name | Image (mathematics) |
| concepts[13].id | https://openalex.org/C136764020 |
| concepts[13].level | 1 |
| concepts[13].score | 0.10032936930656433 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[13].display_name | World Wide Web |
| concepts[14].id | https://openalex.org/C118552586 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[14].display_name | Psychiatry |
| concepts[15].id | https://openalex.org/C94625758 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[15].display_name | Politics |
| keywords[0].id | https://openalex.org/keywords/similarity |
| keywords[0].score | 0.8342069387435913 |
| keywords[0].display_name | Similarity (geometry) |
| keywords[1].id | https://openalex.org/keywords/representation |
| keywords[1].score | 0.6736176609992981 |
| keywords[1].display_name | Representation (politics) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6356766223907471 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/embedding |
| keywords[3].score | 0.6178045272827148 |
| keywords[3].display_name | Embedding |
| keywords[4].id | https://openalex.org/keywords/citation |
| keywords[4].score | 0.5917909741401672 |
| keywords[4].display_name | Citation |
| keywords[5].id | https://openalex.org/keywords/neglect |
| keywords[5].score | 0.5605204701423645 |
| keywords[5].display_name | Neglect |
| keywords[6].id | https://openalex.org/keywords/information-retrieval |
| keywords[6].score | 0.5483052730560303 |
| keywords[6].display_name | Information retrieval |
| keywords[7].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[7].score | 0.4664663076400757 |
| keywords[7].display_name | Artificial intelligence |
| keywords[8].id | https://openalex.org/keywords/natural-language-processing |
| keywords[8].score | 0.3927159309387207 |
| keywords[8].display_name | Natural language processing |
| keywords[9].id | https://openalex.org/keywords/psychology |
| keywords[9].score | 0.19528919458389282 |
| keywords[9].display_name | Psychology |
| keywords[10].id | https://openalex.org/keywords/political-science |
| keywords[10].score | 0.15990003943443298 |
| keywords[10].display_name | Political science |
| keywords[11].id | https://openalex.org/keywords/law |
| keywords[11].score | 0.1341482400894165 |
| keywords[11].display_name | Law |
| keywords[12].id | https://openalex.org/keywords/image |
| keywords[12].score | 0.1020246148109436 |
| keywords[12].display_name | Image (mathematics) |
| keywords[13].id | https://openalex.org/keywords/world-wide-web |
| keywords[13].score | 0.10032936930656433 |
| keywords[13].display_name | World Wide Web |
| language | en |
| locations[0].id | doi:10.5121/csit.2021.112302 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306425045 |
| locations[0].source.issn | |
| locations[0].source.type | conference |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Natural Language Processing |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://doi.org/10.5121/csit.2021.112302 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Natural Language Processing |
| locations[0].landing_page_url | http://doi.org/10.5121/csit.2021.112302 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5084887810 |
| authorships[0].author.orcid | https://orcid.org/0009-0009-4281-6984 |
| authorships[0].author.display_name | Harshit Jain |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I94234084 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, IIT Kanpur, India |
| authorships[0].institutions[0].id | https://openalex.org/I94234084 |
| authorships[0].institutions[0].ror | https://ror.org/05pjsgx75 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I94234084 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Indian Institute of Technology Kanpur |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Harshit Jain |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science and Engineering, IIT Kanpur, India |
| authorships[1].author.id | https://openalex.org/A5074056758 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Naveen Pundir |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I94234084 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, IIT Kanpur, India |
| authorships[1].institutions[0].id | https://openalex.org/I94234084 |
| authorships[1].institutions[0].ror | https://ror.org/05pjsgx75 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I94234084 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Institute of Technology Kanpur |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Naveen Pundir |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, IIT Kanpur, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.5121/csit.2021.112302 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | Representation Learning and Similarity of Legal Judgements using Citation Networks |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13643 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9988999962806702 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3320 |
| primary_topic.subfield.display_name | Political Science and International Relations |
| primary_topic.display_name | Artificial Intelligence in Law |
| related_works | https://openalex.org/W2159755425, https://openalex.org/W1969705708, https://openalex.org/W2335173445, https://openalex.org/W4256003934, https://openalex.org/W605469898, https://openalex.org/W2415081177, https://openalex.org/W2404105892, https://openalex.org/W4206611539, https://openalex.org/W1605212617, https://openalex.org/W2081253999 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.5121/csit.2021.112302 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306425045 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | conference |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Natural Language Processing |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://doi.org/10.5121/csit.2021.112302 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Natural Language Processing |
| best_oa_location.landing_page_url | http://doi.org/10.5121/csit.2021.112302 |
| primary_location.id | doi:10.5121/csit.2021.112302 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306425045 |
| primary_location.source.issn | |
| primary_location.source.type | conference |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Natural Language Processing |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://doi.org/10.5121/csit.2021.112302 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Natural Language Processing |
| primary_location.landing_page_url | http://doi.org/10.5121/csit.2021.112302 |
| publication_date | 2021-12-23 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W6672545292, https://openalex.org/W2794961645, https://openalex.org/W1614298861, https://openalex.org/W2806332249, https://openalex.org/W2366141641, https://openalex.org/W2154851992, https://openalex.org/W4297571622, https://openalex.org/W2131744502, https://openalex.org/W2088368771, https://openalex.org/W2926442184, https://openalex.org/W1888005072, https://openalex.org/W40010561 |
| referenced_works_count | 12 |
| abstract_inverted_index.a | 56, 110, 143 |
| abstract_inverted_index.In | 105 |
| abstract_inverted_index.at | 133 |
| abstract_inverted_index.by | 69 |
| abstract_inverted_index.do | 83 |
| abstract_inverted_index.in | 22, 35, 49, 75, 90 |
| abstract_inverted_index.is | 60, 67, 132 |
| abstract_inverted_index.of | 26, 52, 117, 123 |
| abstract_inverted_index.on | 142 |
| abstract_inverted_index.or | 63, 82, 102 |
| abstract_inverted_index.to | 18, 95, 113 |
| abstract_inverted_index.we | 108 |
| abstract_inverted_index.UK, | 6 |
| abstract_inverted_index.act | 98 |
| abstract_inverted_index.and | 1, 99 |
| abstract_inverted_index.can | 33, 41 |
| abstract_inverted_index.for | 45, 139 |
| abstract_inverted_index.law | 12 |
| abstract_inverted_index.not | 84 |
| abstract_inverted_index.par | 134 |
| abstract_inverted_index.the | 10, 24, 27, 72, 76, 86, 91, 115, 121, 129, 136 |
| abstract_inverted_index.use | 55 |
| abstract_inverted_index.e.g. | 93 |
| abstract_inverted_index.etc. | 104 |
| abstract_inverted_index.help | 34, 42 |
| abstract_inverted_index.like | 5 |
| abstract_inverted_index.many | 2 |
| abstract_inverted_index.only | 70 |
| abstract_inverted_index.that | 128 |
| abstract_inverted_index.this | 106 |
| abstract_inverted_index.with | 135 |
| abstract_inverted_index.India | 0 |
| abstract_inverted_index.Prior | 47 |
| abstract_inverted_index.They, | 78 |
| abstract_inverted_index.basic | 57 |
| abstract_inverted_index.case. | 29 |
| abstract_inverted_index.cases | 21 |
| abstract_inverted_index.dense | 64 |
| abstract_inverted_index.gives | 15 |
| abstract_inverted_index.learn | 114 |
| abstract_inverted_index.legal | 53, 118, 145 |
| abstract_inverted_index.names | 103 |
| abstract_inverted_index.novel | 111 |
| abstract_inverted_index.other | 3 |
| abstract_inverted_index.prior | 19, 96 |
| abstract_inverted_index.using | 71, 120 |
| abstract_inverted_index.vital | 87 |
| abstract_inverted_index.which | 14, 40, 59, 66 |
| abstract_inverted_index.words | 73 |
| abstract_inverted_index.Better | 30 |
| abstract_inverted_index.Canada | 8 |
| abstract_inverted_index.cases, | 39, 97 |
| abstract_inverted_index.either | 61, 80 |
| abstract_inverted_index.follow | 9 |
| abstract_inverted_index.paper, | 107 |
| abstract_inverted_index.article | 100 |
| abstract_inverted_index.current | 28 |
| abstract_inverted_index.earlier | 37 |
| abstract_inverted_index.finding | 36 |
| abstract_inverted_index.lawyers | 43 |
| abstract_inverted_index.learned | 68, 130 |
| abstract_inverted_index.methods | 32, 138 |
| abstract_inverted_index.neglect | 81 |
| abstract_inverted_index.numbers | 101 |
| abstract_inverted_index.outcome | 25 |
| abstract_inverted_index.present | 74 |
| abstract_inverted_index.propose | 109 |
| abstract_inverted_index.related | 20 |
| abstract_inverted_index.results | 126 |
| abstract_inverted_index.similar | 38 |
| abstract_inverted_index.approach | 112 |
| abstract_inverted_index.dataset. | 146 |
| abstract_inverted_index.document | 140 |
| abstract_inverted_index.however, | 79 |
| abstract_inverted_index.standard | 144 |
| abstract_inverted_index.citations | 94 |
| abstract_inverted_index.computing | 50 |
| abstract_inverted_index.countries | 4 |
| abstract_inverted_index.document. | 77 |
| abstract_inverted_index.documents | 119 |
| abstract_inverted_index.embedding | 65, 131 |
| abstract_inverted_index.emphasize | 85 |
| abstract_inverted_index.searching | 44 |
| abstract_inverted_index.system’ | 13 |
| abstract_inverted_index.‘common | 11 |
| abstract_inverted_index.Australia, | 7 |
| abstract_inverted_index.approaches | 48 |
| abstract_inverted_index.documents. | 124 |
| abstract_inverted_index.embeddings | 116 |
| abstract_inverted_index.importance | 17 |
| abstract_inverted_index.judgements | 54 |
| abstract_inverted_index.similarity | 31, 51, 141 |
| abstract_inverted_index.demonstrate | 127 |
| abstract_inverted_index.determining | 23 |
| abstract_inverted_index.information | 89 |
| abstract_inverted_index.judgements, | 92 |
| abstract_inverted_index.precedents. | 46 |
| abstract_inverted_index.substantial | 16 |
| abstract_inverted_index.‘legal’ | 88 |
| abstract_inverted_index.Experimental | 125 |
| abstract_inverted_index.abag-of-words | 62 |
| abstract_inverted_index.representation | 58 |
| abstract_inverted_index.citationnetwork | 122 |
| abstract_inverted_index.state-of-the-art | 137 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.75 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.40400668 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |