Representations and binomial coefficients Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5802/art.24
· OA: W4409068182
To a root system <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>R</mml:mi></mml:math> and a choice of coefficients in a field <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>K</mml:mi></mml:math> we associate a category <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>𝒳</mml:mi></mml:math> of graded spaces with operators . For an arbitrary choice of coefficients we show that we obtain a semisimple category in which the simple objects are parametrized by their highest weight. Then we assume that the coefficients are given by quantum binomials associated to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mi>K</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>, where <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>q</mml:mi></mml:math> is an invertible element in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>K</mml:mi></mml:math>. In the case that <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>R</mml:mi></mml:math> is simply laced and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mi>K</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math> has positive (quantum) characteristic, we construct a Frobenius pullback functor and prove a version of Steinberg’s tensor product theorem for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>𝒳</mml:mi></mml:math>. Then we prove that one can view the objects in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>𝒳</mml:mi></mml:math> as the semisimple representations of Lusztig’s quantum group associated to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mi>R</mml:mi><mml:mo>,</mml:mo><mml:mi>K</mml:mi><mml:mo>,</mml:mo><mml:mi>q</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math> (for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>q</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math> we obtain semisimple representations of the hyperalgebra associated to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mi>R</mml:mi><mml:mo>,</mml:mo><mml:mi>K</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:math>). Hence we obtain new proofs of the Frobenius and Steinberg theorems both in the representation theory of reductive algebraic groups and of quantum groups.