RePro: Leveraging Large Language Models for Semi-Automated Reproduction of Networking Research Results Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2509.21074
Reproducing networking research is a critical but challenging task due to the scarcity of open-source code. While Large Language Models (LLMs) can automate code generation, current approaches lack the generalizability required for the diverse networking field. To address this, we propose RePro, a semi-automated reproduction framework that leverages advanced prompt engineering to reproduce network systems from their research papers. RePro combines few-shot in-context learning with Structured and Semantic Chain of Thought (SCoT/SeCoT) techniques to systematically translate a paper's description into an optimized, executable implementation. The framework operates through a three-stage pipeline: system description extraction, structural code generation, and code optimization. Our evaluation with five state-of-the-art LLMs across diverse network sub-domains demonstrates that RePro significantly reduces reproduction time compared to manual efforts while achieving comparable system performance, validating its effectiveness and efficiency.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2509.21074
- https://arxiv.org/pdf/2509.21074
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4414790478
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414790478Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2509.21074Digital Object Identifier
- Title
-
RePro: Leveraging Large Language Models for Semi-Automated Reproduction of Networking Research ResultsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-25Full publication date if available
- Authors
-
Yining Jiang, Wei Xu, Qing Song, Yu‐Ling Lin, X. Shirley Liu, X. Y. Zheng, Qiang Su, Lizhao You, Lu Tang, Wuhu Feng, Linghe Kong, Qiao Xiang, Jiwu ShuList of authors in order
- Landing page
-
https://arxiv.org/abs/2509.21074Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2509.21074Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.21074Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414790478 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2509.21074 |
| ids.doi | https://doi.org/10.48550/arxiv.2509.21074 |
| ids.openalex | https://openalex.org/W4414790478 |
| fwci | 0.0 |
| type | preprint |
| title | RePro: Leveraging Large Language Models for Semi-Automated Reproduction of Networking Research Results |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11273 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9797999858856201 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Advanced Graph Neural Networks |
| topics[1].id | https://openalex.org/T10064 |
| topics[1].field.id | https://openalex.org/fields/31 |
| topics[1].field.display_name | Physics and Astronomy |
| topics[1].score | 0.9010000228881836 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3109 |
| topics[1].subfield.display_name | Statistical and Nonlinear Physics |
| topics[1].display_name | Complex Network Analysis Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2509.21074 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2509.21074 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2509.21074 |
| locations[1].id | doi:10.48550/arxiv.2509.21074 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2509.21074 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5007420011 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7624-4488 |
| authorships[0].author.display_name | Yining Jiang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jiang, Yining |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5100407852 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1960-0992 |
| authorships[1].author.display_name | Wei Xu |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Xu, Wenyun |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5100721848 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9444-5558 |
| authorships[2].author.display_name | Qing Song |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Song, Qingyu |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5100599536 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0299-6588 |
| authorships[3].author.display_name | Yu‐Ling Lin |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Lin, Yuling |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5045575546 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4736-7339 |
| authorships[4].author.display_name | X. Shirley Liu |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Liu, Xuanhao |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5014387492 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | X. Y. Zheng |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Zheng, Xiaoqiang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5072565311 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-0755-5802 |
| authorships[6].author.display_name | Qiang Su |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Su, Qiang |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5011225547 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-9672-7938 |
| authorships[7].author.display_name | Lizhao You |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | You, Lizhao |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5101583971 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-2923-6247 |
| authorships[8].author.display_name | Lu Tang |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Tang, Lu |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5091049177 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-9907-9120 |
| authorships[9].author.display_name | Wuhu Feng |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Feng, Wangjian |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5072308822 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-9266-3044 |
| authorships[10].author.display_name | Linghe Kong |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Kong, Linghe |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5015404751 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-3394-6279 |
| authorships[11].author.display_name | Qiao Xiang |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Xiang, Qiao |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5101740783 |
| authorships[12].author.orcid | https://orcid.org/0000-0002-7362-2789 |
| authorships[12].author.display_name | Jiwu Shu |
| authorships[12].author_position | last |
| authorships[12].raw_author_name | Shu, Jiwu |
| authorships[12].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.21074 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | RePro: Leveraging Large Language Models for Semi-Automated Reproduction of Networking Research Results |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11273 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9797999858856201 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Advanced Graph Neural Networks |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.21074 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.21074 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.21074 |
| primary_location.id | pmh:oai:arXiv.org:2509.21074 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2509.21074 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2509.21074 |
| publication_date | 2025-09-25 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 4, 42, 76, 88 |
| abstract_inverted_index.To | 36 |
| abstract_inverted_index.an | 80 |
| abstract_inverted_index.is | 3 |
| abstract_inverted_index.of | 13, 69 |
| abstract_inverted_index.to | 10, 51, 73, 118 |
| abstract_inverted_index.we | 39 |
| abstract_inverted_index.Our | 100 |
| abstract_inverted_index.The | 84 |
| abstract_inverted_index.and | 66, 97, 129 |
| abstract_inverted_index.but | 6 |
| abstract_inverted_index.can | 21 |
| abstract_inverted_index.due | 9 |
| abstract_inverted_index.for | 31 |
| abstract_inverted_index.its | 127 |
| abstract_inverted_index.the | 11, 28, 32 |
| abstract_inverted_index.LLMs | 105 |
| abstract_inverted_index.code | 23, 95, 98 |
| abstract_inverted_index.five | 103 |
| abstract_inverted_index.from | 55 |
| abstract_inverted_index.into | 79 |
| abstract_inverted_index.lack | 27 |
| abstract_inverted_index.task | 8 |
| abstract_inverted_index.that | 46, 111 |
| abstract_inverted_index.time | 116 |
| abstract_inverted_index.with | 64, 102 |
| abstract_inverted_index.Chain | 68 |
| abstract_inverted_index.Large | 17 |
| abstract_inverted_index.RePro | 59, 112 |
| abstract_inverted_index.While | 16 |
| abstract_inverted_index.code. | 15 |
| abstract_inverted_index.their | 56 |
| abstract_inverted_index.this, | 38 |
| abstract_inverted_index.while | 121 |
| abstract_inverted_index.(LLMs) | 20 |
| abstract_inverted_index.Models | 19 |
| abstract_inverted_index.RePro, | 41 |
| abstract_inverted_index.across | 106 |
| abstract_inverted_index.field. | 35 |
| abstract_inverted_index.manual | 119 |
| abstract_inverted_index.prompt | 49 |
| abstract_inverted_index.system | 91, 124 |
| abstract_inverted_index.Thought | 70 |
| abstract_inverted_index.address | 37 |
| abstract_inverted_index.current | 25 |
| abstract_inverted_index.diverse | 33, 107 |
| abstract_inverted_index.efforts | 120 |
| abstract_inverted_index.network | 53, 108 |
| abstract_inverted_index.paper's | 77 |
| abstract_inverted_index.papers. | 58 |
| abstract_inverted_index.propose | 40 |
| abstract_inverted_index.reduces | 114 |
| abstract_inverted_index.systems | 54 |
| abstract_inverted_index.through | 87 |
| abstract_inverted_index.Language | 18 |
| abstract_inverted_index.Semantic | 67 |
| abstract_inverted_index.advanced | 48 |
| abstract_inverted_index.automate | 22 |
| abstract_inverted_index.combines | 60 |
| abstract_inverted_index.compared | 117 |
| abstract_inverted_index.critical | 5 |
| abstract_inverted_index.few-shot | 61 |
| abstract_inverted_index.learning | 63 |
| abstract_inverted_index.operates | 86 |
| abstract_inverted_index.required | 30 |
| abstract_inverted_index.research | 2, 57 |
| abstract_inverted_index.scarcity | 12 |
| abstract_inverted_index.achieving | 122 |
| abstract_inverted_index.framework | 45, 85 |
| abstract_inverted_index.leverages | 47 |
| abstract_inverted_index.pipeline: | 90 |
| abstract_inverted_index.reproduce | 52 |
| abstract_inverted_index.translate | 75 |
| abstract_inverted_index.Structured | 65 |
| abstract_inverted_index.approaches | 26 |
| abstract_inverted_index.comparable | 123 |
| abstract_inverted_index.evaluation | 101 |
| abstract_inverted_index.executable | 82 |
| abstract_inverted_index.in-context | 62 |
| abstract_inverted_index.networking | 1, 34 |
| abstract_inverted_index.optimized, | 81 |
| abstract_inverted_index.structural | 94 |
| abstract_inverted_index.techniques | 72 |
| abstract_inverted_index.validating | 126 |
| abstract_inverted_index.Reproducing | 0 |
| abstract_inverted_index.challenging | 7 |
| abstract_inverted_index.description | 78, 92 |
| abstract_inverted_index.efficiency. | 130 |
| abstract_inverted_index.engineering | 50 |
| abstract_inverted_index.extraction, | 93 |
| abstract_inverted_index.generation, | 24, 96 |
| abstract_inverted_index.open-source | 14 |
| abstract_inverted_index.sub-domains | 109 |
| abstract_inverted_index.three-stage | 89 |
| abstract_inverted_index.(SCoT/SeCoT) | 71 |
| abstract_inverted_index.demonstrates | 110 |
| abstract_inverted_index.performance, | 125 |
| abstract_inverted_index.reproduction | 44, 115 |
| abstract_inverted_index.effectiveness | 128 |
| abstract_inverted_index.optimization. | 99 |
| abstract_inverted_index.significantly | 113 |
| abstract_inverted_index.semi-automated | 43 |
| abstract_inverted_index.systematically | 74 |
| abstract_inverted_index.implementation. | 83 |
| abstract_inverted_index.generalizability | 29 |
| abstract_inverted_index.state-of-the-art | 104 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 13 |
| citation_normalized_percentile |